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- FOREWORD

This report is an adaptation of the master's thesis of
Robert D. Essert, Jr., "Axisymmetric Propagation of a Spherical N Wave
g in a Cyclindrical Tube". Mr., Essert was enrolled in the Department

of Mechanical Engineering and received his degree in December 1980.

This research was carried out at Applied Research Laboratories
and was supported by the Office of Naval Research under Contract

N00O14-75-C-0867. Scientific Officer for ONR was Dr. Logan E. Hargrove.
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GLOSSARY OF IMPORTANT SYMBOLS

; a tube radius
<, small-signal, adiabatic sound speed
f frequency
i ray segment index
] /-1
ﬁ complex propagation vector ‘f
n reflected wave index ;
p(L) acoustic pressure (time domain)
P, ambient pressure
r radial coordinate
r 2na (radius of the nth ring image source)
t dimensional time coordinate
t' retarded time
X axial coordinate
oAy point of ith reflection (Chapters III, V, respectively)
A,B coefficients in approximate absorption a* (Appendix B)
D(8) Piston directivity 2Jl(kosine)/ko sind
F(w) F N (l+jw\)I'/c§)

Flg(t)] Fourier transform of g(t)

Hél’z)(z) Hankel functions of the first and second kind of order m
Jm(z) Bessel function of the first kind of order m
ix
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0i position of ith focus
0[z] of order z
. P(w) ‘Fip(t)], acoustic pressure (frequency domain)
Po peak pressure amplitude at position Ro
' Pr Prandtl number
> )
R vector coordinate
1/2
R direct travel path length (x +r ) , Or X cosf + r sind J
1/2
R path length for the nth reflected signal (x +r§) , Or .
!

X cosf <+ r sin®
n n n

R' r sinb j
n :

( T absolute temperature (Chipters III, IV, Appendices B, C),

N wave half-duration (Chapter II)
' T reference N wave half-duration (duration of 1st half for

nonideal N wave)

a atmospheric absorption coefficient, as given by ABSORP
a* approximate absorption coefficient Amz + B
" 8 (v+1)/2
.
~ﬁ ¥ ratio of specific heats
4 r (A+2u) /0 + (y-1)/Pr
?1 S(z) Dirac delta function ;
’: n dimensionless absorption parameter :
- i 6 azimuthal angle of propagation
. i 3 dilatational coefficient of viscosity
|

u shear coefficient of viscosity

kinematic viscosity u/co
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axial wave number

radial wave number
ambient density
microphone radius
dimensionless time t'/To
initial phase of a wavelet
reflection coefficient

angular frequency 27f
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CHAPTER 1

INTRODUCTION

This thesis documents an experimental and theoretical
investigation of the sound field produced by a transient point source in
a cylindrical tube. The field is made up of the direct pulse and a se-
quence of pulses representing reflections from the tube wall. Linear
theory is used to explain the amplitude and phase of waveforms measured
on the tube axis. The solution, given as a series expansion in terms of
rays, provides an adequate explanation of the measured waveforms for low
source amplitudes. Measurements indicate the growth of nonlinear effects
as the source amplitude is increased.

A. Description of the Problem; Motivation by Experiment

Because the genesis of our study was experimental in nature,
we begin this work with a brief description of the measurement

system and some preliminary data. The measurements are discussed in

greater detail in Chapter II. The basic apparatus is sketched in Fig. 1.1.

A high voltage spark source was used to produce a short pressure transient
on the axis of an air-filled aluminum tube. The pressure pulse emitted

by the spark was an N wave, so called because of its resemblance to the
capital letter N. The typical duration of the N wave was 10 psec, and

the electrode gap was small enough that the spark could be considered a
point source. Two different lengths of tube were used, as is indicated

by the two microphone positions in the sketch. The inside diameter of

the tube was 5.1 cm, and the lengths of the short and long tubes were

about 1.5 and 15 diameters, respectively. The receiver was a wideband

1




Se e Sty o

39NL V NI NOILYOVJOdd 3AVAM N 304 SNLYYVddY TVLNIWRNEdXS

JOVLI0A
HOIH

L'l 33n91d
3d02SOTIS0
J9Vi01S 4399141
\ ; Av13a
A\ VNNILNVY
INOHJOMDIW
T —><+——
- - e
| ! wavds /|
3g0L WANIWATY
- - I 2N
.. R

ARL:UT
AS.79-2160-S
RDE-GA
11.6-79
REV6-16-80



condenser microphone, centered on the axis of the tube. The active por-
tion of the microphone had a diameter less than 4% of the tube diameter,
and so approximated a point receiver, The microphone preamplifier, not

shown, but located outside the tube, was connected directly to a digital
oscilloscope. The oscilloscope was triggered after an appropriate delay
by the electromagretic radiation from the spark.

Oscillograms of the on-axis pressure at the two different

microphone positions are shown in Fig. 1.2. Each series of pulses begins

with the reception of the direct N wave which has traveled straight down
the tube axis. A series of reflected signals follows. The first of these
represents a wave reflected from the tube wall midway between source and

( receiver, the second represents a twice reflected wave, and so on. In the

' long tube, the first several reflected signals overlap because path length
differences are smaller than the pulse length. In the short tube, however,
all pulses are resolved in time.

- Some important features of the behavior of the pressure wave-
form are evident in Fig., 1.2. First, most of the reflected signals are
larger in amplitude than the direct wave. Second, the overall envelope
of the pulse peaks increases to a maximum and then slowly decays. The

S rise and fall are more rapid in the short tube. Third, the envelope ex-

hibits oscillatory behavior. The "period" of oscillation is four pulses.

;‘1 In order that the individual pulse shapes may be more closely 1

’.: examined, the first half of the oscillogram in Fig. 1.2(b) is repeated

. j in Fig. 1.3 on an expanﬂed time scale. A fourth observation may now be ﬂ
: made: Although the direct arrival is an N wave, later arrivals are not

‘] N waves; the delayed pulses are different from the direct wave in shape
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as well as amplitude. It is seen that the oscillatory behavior of the
amplitude envelope is associated with a periodic variation in wave shape:
the fifth reflected wave (n=5) resembles the first (n=1), the sixth
resembles the second, and so on. The sequence of four wave shapes is
repeated indefinitely.

We submit that the sequential change in wave shape is due to
cumulative 90° phase shifts.* The tube wall is a curved reflector; indeed, [
it is a cylindrical mirror. Focusing produced by a cylindrical mirror is
two dimensional, and whenever a wave passes through a two-dimensional focus,
it suffers a phase lag of 90°.1 In the tube reflected portions of the con-
fined wavefront cross the axis at least once (see Fig. 1.4). Because the
axis is a line on which the convergent waves focus, the phase of each
reflected front changes abruptly there. The phase of the divergent post-
focus front lags that of the corresponding pre~focus front by n/2. As
each part of the wavefront alternately converges and diverges, its relative
phase lag increases in increments of w/2. Hence, every fourth reflected wave
possesses a cumulative phase shift of 2w, and the wave shape repeats.

A primary objective of this investigation is to analyze the
salient features of the waveforms measured on the axis of the tube. A
valid mathematical description should account explicitly for the amplitude
variation and cumulative phase shift exhibited by the measured waveforms.

In Chapter III it is shown that a solution of the linear wave equation for
a lossy medium provides an adequate explanation of the measurements for low

source amplitudes. At high source amplitudes, measured waveforms differ

*
A transient signal is said to undergo a 90° phase shift when the phase
of each frequency component in the signal is shifted 90°.

TR TR Y ITT I T T e~ meee o »j
. Aol Sl sl L aallden T s



T T ee——
SOURCE RECEIVER
‘€bv )
.ﬁ .
A
< -
A
i T
B A
[} ®
C B A
[}
D Cc B A
FIGURE 1.4

PROGRESSION OF DIRECT AND REFLECTED
WAVE FRONTS IN THE TUBE

PHASE LAG AT POINT AIS0; B, »/2;C, n; D, 3n/2
ARROWS INDICATE DIRECTION OF TRAVEL

ARL:UT
AS-80-1279
RDE -GA
6-13-80




R substantially from those predicted by linear theory. The discrepancies
are attributed to nonlinear propagation distortion.
B. Background
Sound propagation in acoustic waveguides may be discussed in
terms of either normal modes or rays. Of major concern in deciding which

approach is more appropriate in a given situation is the ratio of the

acoustic wavelength A to a characteristic dimension of the waveguide.
A commonly used parameter is ka, where k=2n/)\ and a is the characteristic
dimension. Mode solutions are, in principle, valid for all possible
values of ka, but they must often be evaluated numerically and can
become unwieldy when the source frequency is high enough to excite a
great many modes. Ray sclutions are valid only for ka>>1, but they have
an important advantage over mode solutions: they have more appeal for
physical understanding. Hametz’3 analyzed the problem of a point source
in a cylindrical tube in terms of both modes and rays. Yis results are
of limited practical applicability.

In the present problem, the signal is a transient whose duration

is short compared to travel time across the tube., The sample measurements

in Figs. 1.1 and 1.2 show that the sound field on the axis is a super-
position of direct and reflected waves. Consequently, a solution given in
terms of rays may be more readily applicable than a mode solution. 1In
fact, a ray path solution can be derived from the mode solution in the
limit of short wavelength, The direct path between source and receiver

corresponds to the fundamental (plane wave) mode, the reflected paths to

higher order (transverse) modes. The results contained in this thesis

will be interpreted, for the most part, in terms of ray theory.




It is shown in Chapters III and IV that focusing on the tube

axis and energy dissipation by the medium are primarily responsible for
the modification of the N shape as the wave propagates down the tube.
S These two mechanisms have been investigated independent of one another by

other researchers, but little work has been published that accounts for

focusing and absorption together. In his modal analysis (Ref. 2) Hamet

accounted for thermal and viscous boundary layer losses, but he did not

E deal with the problem of focusing. In his ray path analysis (Ref. 3) he
recognized that the reflected wavefronts must focus, but he neglected
losses altogether.

We now draw attention to research efforts of others that have
contributed to our understanding of the present problem. First, studies
of absorption and dispersion of sound waves by the medium are discussed.
Next, we review time domain methods used in dealing with pulses and note

how those methods have been applied to problems involving the focusing of
acoustic transients and the propagation of finite amplitude sound in tubes.

Finally, relevant work in some areas of applied acoustics is mentioned.

1. Absorption and dispersion in an air-filled tube. It is now
. known that the three most important causes of sound attenuation and dis-
S
“ persion in an homogeneous atmosphere are viscosity, thermal diffusion, and
54 molecular relaxation. While molecular relaxation is a comparatively new
‘! field of study, sound propagation in a viscous, heat conducting (thermo-
N
< viscous) medium has been investigated for over a century. In 1868
) f Kirchhoff4 reported an analysis of quasi-plane waves in a cylindrical tube
; containing a thermoviscous gas. He found an exact dispersion relation
>
¥
satisfied by the complex wave number k, but his result is in the form of »
“g A
A
" f
’ 14

T S SO WV
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a complicated transcendental equation that cannot in general be solved
explicitly. By assuming that the boundary layer effects (viscous drag and
heat conduction at the tube wall) were of much greater importance than main-
stream effects (friction and heat conduction that occur in the main body
of the fluid, away from the tube wall), Kirchhoff was able to determine

an approximate form for k that may be easily incorporated in a frequency
domain solution for plane progressive waves in a tube.+ The effect of
thermoviscous boundary layer absorption on higher order modes in wave-
guides was the subject of much discussion in the early 1950'5.6"11 Using
different methods, Beattylo and Lambertll arrived at equivalent expres-
sions for the boundary layer attenuation of higher modes. Neither con-
sidered the dispersive effects of the boundary layer, nor of the main-
stream absorption. In our problem mainstream absorption is larger

than boundary layer absorption; so either boundary layer effects must

be neglected altogether, or a more rigorous solution of the full

Kirchhoff dispersion relation, restated for higher order modes, must be
attempted.

More recently, several researchers have utilized numerical
techniques to calculate absorption and dispersion from the Kirchhoff
solution. Shields, Lee, and Wiley12 were the first to compute a numerical
solution for the plane wave mode from the exact Kirchhoff equation.

Their results were later verified experimentally by Shields, Bass, and
Bolen13 over a wide range of frequencies. Tijdemanla developed a numerical
model similar to that of Shields, Lee, and Wiley12 after rewriting the

Kirchhoff equation in terms of the compressional wave number, the shear

t 5

Kirchhoff's analysis was repeated by Rayleigh in his treatise of 1877.
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wave number, and a reduced frequency parameter. The Tijdeman paper also
contains a review of other important analytical and numerical solutioms of

the Kirchhoff equation.

5 Scarton and Rouleau15 calculated attenuation and dispersion
curves and mode shapes for the first thirty-two axisymmetric modes in a
tube filled with a viscous liquid. Their solution contains both main-
stream and boundary layer viscosity effects, but it does not include the
influence of heat conduction., Uncoupled scalar and vector viscous wave J
equations are solved for each particular value of the product of frequency
and viscosity (which is proportional to the boundary layer thickness).
Such calculations are beyond the scope of this investigation.

t Since it was not possible to obtain a manageable solution of the

thermoviscous wave equation valid for our problem, boundary layer effects

! were neglected altogether. Implications of this decision and further

justification for it are discussed in Chapters III and IV.
Viscosity, heat conduction, and molecular relaxation all make

important contributions to mainstream absorption, but the relative impor-

tance of each varies with frequency. Within the frequency interval of

2, Time domain analysis of the diffraction and focusing of pulses.

_;. interest in the present study, 10 kHz - 1 MHz, each of the three absorp-

~§ tion mechanisms is important. Atmospheric absorption of a small-signal

gi N wave is discussed in Appendix B of this work. For further information

'3 on the study of atmospheric absorption the reader is referred to Appen-
; dix B and Refs. B.1-B.4.

The Helmholtz-Kirchhoff (or simply Kirchhoff) integral theorem has been

employed by many researchers in their analyses of the refraction,




12
diffraction, and reflection of small-signal acoustic pulses. The theorem
gives the value of the field at a point Q in terms of an integral of certain
properties involving the pressure and pressure gradient on a surrounding
surface S.T Anderson, Northwood, and Barnes16 used the Kirchhoff integral
to obtain a solution for a pulse reflected from the inside surface of a
sphere. Agreement between their measurements and theory was compromised by

the fact that their transducers were not omnidirectional. A time domain

analysis of broadband refraction and diffraction was published by
H. A. Wright.l7 The accompanying experimental results were obtained using
an (approximately) omnidirectional spark source. The Kirchhoff integral
has been applied by Lockwood18 and by Cobb19 to diffraction of N waves in
lossless media. W. M. Wrightzo has studied the scattering of N waves by
' plates and cylinders and interference of reflected and diffracted signals
; at the face of a microphone.
Most of the pulse-to-pulse variation in wave shape observed in
the present study is due to focusing. Since the advent of supersonic air-
craft there have been numerous studies related to sonic boom focusing. The

theoretical work of Whitham21’22

provided a strong foundation for later
experimenters in acoustics and fiuid mechanics. Whitham described how the

S process of self-refraction can prevent focusing: As a concave wavefront

approaches a focus, the points near the center of the front travel faster

%
-‘1 than those near the edge. If finite amplitude effects are large compared
Y
; to absorption effects, the ceuter of the front overtakes the edge, and the
- i once concave front turns convex without ever passing through a focus. The
i refraction and diffraction of finite-amplitude N waves by gas bubbles were
L3
|
v 4 +Anderson30 derived the Kirchhoff integral for a lossy medium.
r‘l
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observed by Davy and Blackstock.23 Beasley, Brooks, and Barger24 investi-
gated two- and three-dimensional focusing of finite amplitude, spark pro-~
duced N waves. Cornet25 used an improved microphone to perform experiments
for the three-dimensional case. 1In his theoretical analysis, Cornet began
with the Kirchhoff integral and later included nonlinear distortion. The
signal at the focus was, in the linear approximation, predicted to be the
derivative of the original signal. It will be shown in a later section of
the present work that a "half-derivative" of the original signal is pre-
dicted at a two~dimensional focus.

The focusing of intense transients other than spark produced
N waves 1is relevant to this discussion. Measurements of three-dimensional
focusing in a shock tube have been published by Sturtevant26 and by
Sturtevant and Kulkarney.27 The measuremcnts are qualitatively explained
by the theory of Whitham. Sanai and Toong28 modeled sonic boom focusing
on a ballistics range. They observed focusing due to increasing Mach
number (“acceleration superboom') and medium stratification ("refraction
superboom') .

Stepwise propagation algorithms have proved to be worthwhile
tools in the study of nonlinear acoustical phenomena. Nonlinear distor-
tion is calculated in the time domain over a short propagation distance.
Then a correction is made for losses and dispersion, which are computed in
the frequency domain. Pestorius29 used such an algorithm to investigate
the propagation of plane, finite amplitude waves in a tube. He assumed
that all absorption and dispersion were due to the presence of a thermo-
viscous boundary layer. A short time later, Anderson30 used a similar

routine to analyze the propagation of a spherical N wave in the open
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atmosphere. To this date, no author has proposed a solution of the
problem of two-dimensional focusing of either large or small amplitude
waves in a lossy medium. This problem is of fundamental concern in the
present study.

3. Relevant work in applied acoustics. In the preceding paragraphs
we have endeavored to illuminate the diversity of the basic research which
forms the foundation of this paper. Let us now examine some applied
research that has provided direction for, and may benefit from, the results
to be presented in this thesis. For example, guided propagation of sonic
booms has received recent attention. Gardner and Rogers3l’32 developed an
elaborate analytical model to describe the propagation of sonic booms in
the thermosphere. They accounted for nonlinear propagation distortion and
atmospheric absorption and predicted a 90° phase shift of the pressure
wave.

Consider next the growing interest in the study of borehole
acoustics. Techniques associated with the use of sound to determine geo-
logic structure have undergone considerable theoretical development. Far-
reaching results for sound propagation within the borehole were given by
Roever, Rosenbaum, and Vining,33 while propagation between boreholes was
studied by Hall, Miller, and Simmons.34 Our investigation concerns a
highly simplified version of the former problem. One of the most impor-
tant virtues of our study is its simplicity. Full-scale borehole measure-
ments are often quite difficult to explain. It is assumed in the present
study that one has control of, or at least knowledge of, the environmental

conditions and the physical properties of the tube.
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Finally, we mention the importance of our work to the study of
core noise radiated by turbofan engines. Core noise originates within the
engine, which is basically a duct of finite length. Salikuddin et al.35
developed a method for measuring the radiation from a duct/nozzle system,
using a spark source inside the duct. The source was located on-axis, and
its spectral density was, for the most part, concentrated below the lowest
cutoff frequency. Consequently, the pulse traveled down the duct as a
quasi-plane wave front. Although the authors do not mention it in the
paper, a portion of the duct surrounding the source was lined with sound
absorbing material to suppress unwanted reflectionss6--the very reflec~
tions we wish to observe. Whether the first few reflected waves (corre-
sponding to the low order transverse modes) were effectively attenuated is
questionable. It is possible, however, that the results to be described
in this thesis may find application in the study of high frequency radia-

tion from ducts and nozzles.

C. Outline and Scope of the Study

The remainder of this thesis is organized as follows. The
experimental apparatus and procedure are described in Chapter II and
sample measured waveforms are presented. Chapter III contains a theoreti-
cal analysis of the problem. The wave equation is solved for a point
source on the axis of a tube containing a lossy gas. Both on- and off-~
axis observation points are considered. The solution is given in terms of
a ray expansion in integral form that is valid for any low amplitude, high
frequency signal. The integral may be evaluated in closed form if the
source is omnidirectional and the medium nondissipative. For less restric-

tive conditions, digital methods are required to evaluate the integral
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solution. The effects of medium dissipation and receiver directivity

are included in a numerical solution for a real (measured) N wave source
function. Computed waveforms and low amplitude measured waveforms are
compared in Chapter IV. Results of measurements made a high source ampli-
tudes are presented in Chapter V, Differences between the high and low
amplitude measurements are attributed to nonlinear effects. A numerical
algorithm, which includes the contributions of nonlinear propagation dis-
tortion, focusing, and atmospheric absorption, is proposed. Chapter VI
contains a summary of the results and some concluding remarks.

Three appendices are included. Appendix A contains a brief

discussion of the application of a 90° phase shift to a broadband signal.
In Appendix B analytical and digital models of the atmospheric absorption
of a small-signal N wave are derived, and results are compared with data
from a free-medium propagation experiment. Appendix C contains listings

of the programs developed to compute on-axis waveforms for the linear

case.
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CHAPTER II

EXPERIMENT

. A general account of the experiment was presented at the
beginning of the previous chapter. This chapter contains detailed descrip-
tions of the measurement apparatus and method, and results obtained there-
from. First, the spark source, aluminum tube, microphone, and electronic
system are discussed. Next, the m.crophone calibration and system align-
ment procedures are outlined. Finally, measurements of the pressure wave-
forms observed on the axis of the tube are introduced.

A, Apparatus

The measurement system was composed of four basic subsystems--
spark source, cylindrical waveguide, condenser microphone, and data
capture equipment (see Fig. 1.1). The important features of each are
described in the following paragraphs.

1. Spark Source. A Spellman Model PN-30 0-30 kV dc power supply
was used to charge a capacitance of 0.083 uF, made up of six 0.5 uF con-
densers connected in series, to between 0.5 and 7.5 kV. The possible
range of spark energies was thus 0.0l to 2.3 J. A 66 MQ resistor wired
in series with the capacitor limited the charging current.

The capacitance was allowed to discharge across a gap between
two diametrically opposed tungsten electrodes. Each electrode was 0.16 cm
in diameter, and its point was ground to a cone of half-angle roughly 30°.
A lucite ring, 5.1 cm 1.d. (the same as thc i.d. of the aluminum tube),

11.2 em o.d., and 2.5 cm length, was machined to support the electrodes in

the tube [see Fig. 2.1(a)]. The spark gap was centered on the tube axis;
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typical gap lengths were between 0.0l and 0.2 cm. The electrodes were
held in threaded aluminum dowels, which allowed symmetric adjustment of
the spark gap from outside the tube. When the voltage across the capaci-
tor reached the breakdown voltage of air, the capacitor discharged
through the gap. The voltage across the capacitor was monitored by means
of a Simpson Model 260 voltmeter.

2. Aluminum Tube. Two different lengths of tube were used in the
expeciments (see Fig. 2.2). The long tube was composed of the lucite
electrode holder, a connecting flange, a 71.1 cm length of aluminum tubing
(wall thickness 0.32 cm), a second connecting flange, and the microphone
holder. The elements making up the short tube were the same electrode
and microphone assemblies and a single connecting flange, 4.9 cm in length.
The 1i.d. of each component was 5.1 cm. Care was taken in construction and
alignment of the various components to minimize surface irregularities at
the junctions. The total axial distance from source plane to receiver
plane was 76.2 cm in the long tube and 7.4 cm in the short tube. A 15 cm
length of tube containing approximately 5 cm of fiberglass was fastened to
the back side of the electrode holder to absorb backward traveling waves.
The tube wall could be considered a rigid boundary for the present problem.

A wave front incident on the inside face of the tube wall is
partly reflected back into the air and partly transmitted into the tube
wall. Of concern here is the airborne reflected wave. It 1s assumed that
the boundary is locally reacting and that shear coupling between the air
and aluminum is negligible. It is assumed also that the propagation

vector for the incident wave has no circumferential component. Consider

a reflected wave incident on the tube wall at grazing angle en. The
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angle of reflection is equal to the angle of incidence, and the angle
of transmission B; is given by Snell's law,

t
cosen = (czlcl)cosen .

where <1 and c, are the sound velocities in air and aluminum, respectively.

The reflection coefficient X, for a single reflection is given by

Z2 sinen - Z1 sind

Z2 31n6n + Zl sinf

Xqp T

=B g [~ I

where Z1 and Z2 are the characteristic impedances of the two media. By
the time the signal reaches the receiver, it has been reflected from the
tube wall n times. The cumulative reflection coefficient is therefore
equal to (xn)n. For all cases of interest in this study (n=1-35, long
tube; n=1-15, short tube) en is less than the critical angle ecr = 86.9°,
and as a result Xpn is complex. However, since Re [(xn)n]20.99990 and

Im [(xn>n]50.0134, we were able to assume with inconsequential error that
the tube was perfectly rigid, i.e., (xn)n=1, for values of n within the
limits specified above.

0o different tubes were used to facilitate accurate measurement
of both long time behavior (amplitude envelope) and short time behavior
(individual pulse waveforms) of the sound field. Because of the high
pulse density and slow decay rate, the long tube data [see Fig. 1.2(a)]
are most useful in an analysis of the amplitude envelope. The pulse
density is lower in the short tube waveforms (all pulses are resolwvzd in
time), but the envelope decays rapidly [see Figs. 1.2(b), 1.3]. The short
tube was therefore used to investigate individual pulse shapes, and the

long tube to study the amplitude envelope.
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3. Microphone and Preamplifier. The condenser microphone and
preamplifier used in this study were developed by Cornet25 after designs
by Wright.37 Anderson30 improved Ehg construction process and was able to
obtain a high degree of consistency from one microphone to the next. A
diaphragm of 3.2 p (1/8 mil) aluminized mylar is laid directly on a micro-
scopically rough, conducting back plate. The transducer has a large band-
width and a broad (low Q) resonance. While the outside diameter of the
microphone cartridge used in this experiment is 1.3 cm, the back plate
(and hence the active area) is just 0.20 cm in diameter. Because of the
large bandwidth the transducer is relatively insensitive (sensitivity =
-67.5 dB re 1 V/N/mz) in relation to most commercially produced condenser
microphones. However, the pressure waves produced in the tube were of
sufficient amplitude that the microphone insensitivity presented no problems.
Although the microphone was nearly a point receiver for low frequencies,
its directivity characteristics profoundly influenced measurements of
shock waves incident at oblique angles. The rise time of the transducer
was measured from its response to moderately strong N waves (traveling in
a direction perpendicular to the microphone face) and found to be approxi-
mately 0.4 psec. The microphone sensitivity, directivity, and frequency
response are addreésed in greater detail in Section B, 'Microphohe Calibra-
tion." For further details of the general properties and construction of
this type of transducer, the reader is referred to the work of Cornet.25

It was necessary to baffle the microphone to obtain accurate
measurements., When a sound wave is incident on a freely suspended
circular microphone, a diffracted wave propagates from the edge of the

microphone toward the center. If all points on the circumference are
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insonified by the incident wave at the same time, as is the case for
normally incident and axisymmetric waves, the signals from all points
superpose at the center.

The diffracted wave arrives at the active area later than the
incident wave by a time corresponding to the difference in travel path
lengths AR. 1If AR is less than or equal to the signal duration At, the two
waves overlap. If, on the other hand, AR>At, the signals are separated in
time. A reflective baffle may be used to extend the face of the microphone
to ensure separation of the signals. The pressure of the incident wave
sensed at the surface of the microphone is twice the freefield pressure.

A special flange assembly was constructed for the purpose of
mounting the microphone on the tube axis [see Fig. 2.1(b)]. Approximately
6.5% of the tube section area was occupied by the microphone cartridge.

In order to minimize the effects of diffracted waves, a 12.8 py (1/2 mil)
mylar baffle was stretched loosely over the remaining area. The baffle is
quite rigid at the high frequerncies of interest.TL The calculated reflec-
tion coefficient is nearly equal to unity for frequencies greater than

50 kHz, and falls to 0.7 at approximately 10 kHz. Lateral positioning

of the microphone/baffle within the tube was accomplished through adjust-
ment of two pairs of diametrically opposed setscrews.

The microphone preamplifier was mounted on the outside of the
receiver assembly, and was connected to the microphone cartridge through

the tube wall by a 15 cm length of low capacitance cable. The hole

ey

'The baffle was originally designed to simultaneously reflect high
frequency (f > 10 kHz) waves and pass low frequency (f < 10 kHz) waves.
We are interested in frequencies between 10 kHz and 1 MHz.
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in the tube wall, 6.4 mm in diameter, was located behind the baffle.
Both calculation and measurement showed that the effect of the extra cable

capacitance on the sensitivity was insignificant. Anderson measured the

- frequency response characteristic of the preamplifier as flat within
+0.16 dB from 250 Hz to 2 MHz.

4, Data Capture and Storage. The signal from the preamplifier was
input directly to a Nicolet Model 2090-11I digital oscilloscope, which was
equipped with a Model 206-2 plug-in unit. Because the instrument's maximum 'i
digitizing rate is 2 MHz, its useful bandwidth is 1 MHz. Use of the entire n
4096-point memory permitted the storage of 2 msec of data with a time
resolution of 0.5 usec/point and 12-bit accuracy. The transient capture
capabilities of this unit were especially well suited to our task.

Electromagnetic radiation from the spark discharge, picked up by a loop

antenna, was used to indirectly trigger the oscilloscope. The trigger
signal opened the gate of an EH Model 130 pulse generator set in single
pulse mode. The oscilloscope was triggered some time later by the nega~
tive going edge of the pulse. By varying the pulse width one could

. delay the oscilloscope trigger until the acoustic wave arrived at the

24 receiver. Captured waveforms were saved by either of two methods. Long
L WY
- waveforms (>100 points) were plotted directly on a Barry Research Model
Z 4 5002 x-y recorder. Individual pulses (<100 points) were read out visually,
1
'1 point by point, and typed into computer memory for plotting at a later
! ti
me.
a
« B. Microphone Calibration
4
" Several microphones fabricated by Cornet and Anderson were
X available for use. The rise time, overshoot, and sensitivity of each in
1
e

POV P P ST Y IR YG Vg JCEEN



el

25
response to N waves of equal amplitude were measured with a Tektronix

Model 5403 analog storage oscilloscope (an analog oscilloscope was used
in this instance because its higher bandwidth allowed more accurate deter-
mination of the rise time and overshoot parameters).

The bandwidth of a transducer can be determined from measurements
of its rise time. The high frequency limit to the response of a conven~
tional condenser microphone is set by the mechanical resonance of the
diaphragm mass against the stiffness of the air cavity between the dia-
phragm and backplate. Above the resonance frequency the response rolls
off at 12 dB/octave. The bandwidth of a simple resonant system of
this sort may be inferred from step response measurements according

to a relation stated by Wallman,38

Zch = 0.69 s (2.1)

where 1 is the 10-907 rise time and fc is the -3 dB rolloff frequency.

Our rise time measurements, however, were based on an M wave input, not a
step input. Nonetheless, it may be demonstrated that when 1 is much
smaller than the N wave half-duration, the response of a low pass filter
or damped oscillator to an N-shaped signal is closely approximated in the
neighborhood of the head shock by the response to a step function of equal
amplitude. The diaphragm of our microphone is placed directly on the back-
plate, and air is trapped in the microscopic cavities thus formed. The
transducer, then, is a parallel combination of many small microphones

of different sizes and, hence, different resonance frequencies. Cornet
has shown that the frequency response of a parallel combination of
microphones whose resonance frequencies are randomly distributed in a
decade fOSfSIO fo is similar to that of a single microphone whose reso-

nance frequency is fo. The major difference between the two cases is that
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the multi~element system has a lower Q than the single microphone. Equa~
tion (2.1) was derived for a single microphone, but in light of the
similarity just noted, it may be used to estimate the bandwidth of
the multi~element microphone. Using Wallman's relation and the meas-
ured value of T = 0.4 usec, one finds that the bandwidth is approximately
860 kHz. (A similar problem, the response of a Gaussian filter--the
atmosphere--to an N wave, is discussed in Appendix B of this work.)
Microphone ringing was apparent in measurements of high

amplitude N waves at short distances. The initial overshoot was of the

order of 8%. Wallman's calculations show that the corresponding ratio of
gain at resonance to gain at midband (this ratio is proportional to Q) is
1.05, or 0.4 dB. It is thus inferred that the frequency response of our
microphone is flat within +0.5, -3.0 dB from near 0 Hz to 860 kHz.

. Amplitude calibration of these transducers, which is done in the
freefield, remains a rather tedious process. Cornet, Anderson, Cobb, and
others have used a technique first described by Davy and Blackstock.2

The method is based on certain amplitude dependent effects caused by

, nonlinear propagation distortion of finite amplitude N waves. The peak
"; pressure amplitude P and half-duration T eof a spherically divergent (ideal)
id
.o N wave at radial distance r are related to the pressure Po and half-
N { duration To at some reference position r, by the following:
N |
Y s
) = ~1/2 )
‘ rP = r P [l+c°ln(r/ro)] , (2.2)
. |
LA T=7T |14¢ In(x/r ) 1/2 . (2.3)
] o o o
&
é
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where

r P
Y+1 0 0
- G#) oo (2.4)
o

o

2p ¢ 0

(o]

and Py Co2 and y are the density, small-signal sound speed, and ratio of

o
specific heats, respectively. Multiplying Eq. (2.2) by Eq. (2.3), one

finds that the product TrP is constant, i.e.,

TrP = ToroPo . (2.5)

If Eq. (2.3) is squared, the result is

2 _ 2 2
T = T0 + ooTo ln(r/ro) . (2.6)

Let the microphone sensitivity be defined as S=e/p, where e is the measured
voltage and p is the free~field pressure (the pressure that would exist
in the absence of the microphone). Equations (2.4) and (2.5) may be com-

bined to yield

3 2
-1 2poco OOTO

2 7 (y+1) TrE ’ (2.7)

where E is the voltage corresponding to the peak pressure P. The two
parameters ong and TrE may be determined from measurements of the N wave
amplitude and half-duration at various distances. The first is just the
slope of T2 versus 1n(r/r0) [see Eq. (2.6)], and the second may be
accurately determined by calculating the average value of TrE over the
various measurement positions.

A special procedure was used to determine T and P at each

measurement distance r. The procedure was designed to reduce variability
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caused by lack of repeatability in the spark production process. The
transient capture capability of the digital oscilloscope allowed us to
record N wave data much faster than was possible with an analog oscillo-
scope. The following method was used to determine the average peak volt-
age and half~duration at each measurement position. First, the breakdown
voltage for each spark discharge was monitored with the dc voltmeter, and
only those waveforms whose breakdown voltage was within 0.1 kV of the
desired value were stored in the oscilloscope memory; approximately 25%
of the discharges were within these limits. Ten acceptable N waveforms
were stored for each measurement position, and average values of E and T
were computed (typical standard deviations were between 2% and 5%). The
spark source was then allowed to discharge until a waveform was captured
whose amplitude and half-duration values were equal to the average values
for that location. This waveform was called an "average waveform'. The
effects of microphone overshoot and finite rise time were identified in
the measured N waves. A least-squares fit of the measured points in the
first half of the waveform was performed in order to smooth the ripple
caused by microphone ringing. The idealized head shock was located at
a point midway between the foot and peak of the measured waveform. The
idealization procedure is illustrated in Fig. 2.3. When the measured rise
time (10-907%) 1 was greater than 2 usec, ringing was absent and the ripple
smoothing step was omitted. The peak voltage E determined from the
idealized waveform was used in all subsequent calculations. For more
detailed descriptions of this idealizing procedure, see Refs. 19, 30.

N waveforms were recorded at eight source-receiver distances

from 5 to 125 cm for a spark energy of 0.42 J and temperature 25°C
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The standard deviation oi each of the 10-term averages of E and T was
less than 5%. Data for large distances (r = 90, 125 cm) was discarded
because it clearly departed from the general trend. It is believed that
the waves at these points were too weak to be adequately described by
weak shock theory. The value of ooTi was computed from a linear regres-—

sion of T2 versus 1n(r/ro). The results are summarized as follows (see

Fig. 2.4):
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TrE = 0.171 pysece m+V ’ standard deviation = 5.47% ,

cng = 10.25 usec2 . correlation coefficient = 0.9996 ,

and finally,

S_1 = 23.85 mbar/V

It should be noted that S is the sensitivity of the overall receiver,
including pressure doubling and preamplifier gain. The high degree of
correlation is attributed to careful monitoring of the spark breakdown
voltage, the accuracy of the oscilloscope, and the procedure of obtaining
an average rather than a single measurement at each distance.

The amplitude linearitv of this type of wideband transducer had
not been previously studied. We compared the response of our microphone
to that of a Bruel & Kjaer (B&K) Type 4138 1/8 in. condenser microphone and
B&K Type 2619 preamplifier using normal incidence, spark produced N waves.
The B&K combination has a specified distortion at 100 kHz of less than 4%

> N/mz). It was there-

for sound pressure levels below 177 dB (re 2 x 10
fore assumed that the B&K unit is a linear receiver for N waves whose peak
overpressures are less than 142 mbar. The rise time of the B&K microphone
was found to be approximately 2 usec; hence, it was necessary to base the
amplitude comparison on the negative pressure peaks of the N wave signa-
tures, where the waveforms are more slowly varying. Twelve peak voltage
measurements were averaged for ea h transducer at each position and spark
energy. Linearity of the wideband transducer was confirmed up to a peak

pressure of 28 mbar. While making measurements of large amplitude waves

in the tube, we found that the transducer or the preamplifier was overloaded

(i.e., the output was temporarily open circuited) by pressures in excess of

75 mbar.
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d C. System Alignment and Experimental Procedure

Because we were attempting to focus and reproduce sound waves of
very high frequency, proper alignment of the source, waveguide, and
receiver was critical. The same general assembly procedure was followed
for both the short tube and long tube systems. This procedure was satis-
factory for alignment of the long tube. However, measutrements made in the
short tube indicated that not all pulses were optimally focused; so addi-
tional adjustments were made for waveform measurements in the short tube.

The general procedure was as follows. First the spark gap and

t microphone were centered in their respective flange assemblies, and the

l flanges were bolted onto one of the tubes. Care was taken to make the
joints as smooth as possible. Fine adjustment of the microphone in the
lateral direction was accomplished by turning the adjustment screws
(located on the outside of the receiver assembly) until the recorded
pulses were as large in amplitude as possible. For the long tube all

pulse amplitudes were maximized when the microphone was located on the

E axis.
I' No single alignment of the short tube optimized focusing
t;f (maximized pulse amplitude) for all pulses. Apparently, the source and/or
i;' recelver was not positioned precisely on the tube axis. 1In order to
:’; obtain accurate measurements in the short tube, we adjusted the lateral
'.? microphone placement for each individual reflected wave, thus ensuring

3 that each pulse was optimally focused. This multi-step procedure required

- that a different spark be used for each observation. An averaging routine,
%
¥ similar to the one discussed in the section on microphone calibration,

was used to suppress the variability in pulse amplitude. After the
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alignment was optimized for a particular pulse, twenty waveforms, whose
associated spark discharge voltages were restricted to a specified narrow
range, were captured in the oscilloscope memory. The average peak ampli-
tude was then computed, and the spark source was allowed to discharge
repeatedly until an ''average waveform” having the same amplitude as the
computed mean was received. Average waveforms were transcribed from
the oscilloscope point by point and typed into a computer for plotting
at a later time. Results obtained using this method were more consistent
and, presumably, more accurate than those obtained from a single spark
discharge.

D. Preliminary Results: Sample Waveforms

Waveforms measured in the long and short tubes were presented
in Chapter I (see Figs. 1.2, 1.3). Recall that the spark energy was
0.16 J, and the microphone remained stationary as it received an entire
series of pulses. It is likely that not all of the individual pulses in
the short tube waveforms [Figs. 1.2(b), 1.3] are optimally focused.

The direct N wave and the first four reflected pulses, measured
in the short tube according to the special shrrt tube alignment procedure
outlined in Section C above, are shown in Fig. 2.5. The ubiquitous aver-
aging procedure was used to reduce the results of twenty measurements for
each n to a single "average waveform." The spark voltage was 1.0 *0.1 kV.

Peak sound pressures of the direct and reflected signals were
large enough to motivate a test for nonlinear propagation distortion.
lhe test results proved negative, however. The breakdown voltage was
reduced (the spurk gap shortened) so that the peak pressure of the direct

wave was reduced from 3.25 mbar to 1.0 mbar. The shapes of the reflected




— — —_ - —————— — 73 -~ den
(=
2. %
=382
229%
. O .ZN
o = _i%w
soqu gz'¢ = % Ao
<< xnXx

f 70'0 = AO¥INI N¥VdS

39N1 1HOHS ‘SWHOJIAVM AFUNSYIW
ST N9

l=v

NHB

TV T T TR T T o e e

y=u g-v

oL W oT 07 Ol+ W/ ol- \W
et 1L Fy \/Ir_.F—L ._.L_.!_M .-—LP[ \\(\/—lr. _._.—_h[
04,4

oy uomila%
..._\

sasi -4 % UUni -4 /%\ 91 - *

(0 = v) TYNOIS 1033d1d

-y

b
L

Ol+ Ot-
rn-L—- 1 1 —_-—m—-nL
sas1l -3
04
d
C : : BERT R Y ol A TRET 1 S

-, .
IS NI SN
.




dl-l.

S T L

-

[P~y Sy

ERR AN SV

35

pulses remained basically unchanged; we are therefore confident that
nonlinear propagation distortion is of little consequence in the 1 kV
(0.04 J) data. Since (as will be shown in Chapter II11) the wave amplitude
decreases as it propagates down the tube, it is assumed that distortion is
also negligible in the long tube, for a 0.04 J spark. Still, propagation
distortion may be significant at higher source levels. Consider, for
example, the waveform for a 0.16 J spark in the short tube (see Fig. 1.3).
The second reflected pulse has a (negative) peak pressure amplitude of
55 mbar. Waves of such high amplitude may become distorted over very
short distances. Clearly, nonlinear effects in this problem merit serious
consideration.

Further experimental results are presented later in this work.
Low amplitude waveforms are compared with theoretical predictions in

Chapter IV. Measurements of high amplitude pressure fields in the tube

are discussed in Chapter V.
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CHAPTER III

THEORETICAL ANALYSIS

In this chapter a mathematical analysis of the experiment is
given. The tube 1s modeled as a rigid cylindrical waveguide of infinite
length, the spark as a point source. An approximate form of the inhomoge-
neous thermoviscous wave equation is solved by Fourier transform methods.
The result is a frequency domain expression for the pressure field as a
sum of direct and reflected signals. Focusing and refocusing of the
reflected waves on the axis cause a cumulative phase shift, which
sequentially alters the shapes of the received waveforms. An explicit
solution for the time waveform received on-axis is determined analytically
for the special case in which (i) the medium is lossless and nondispersive,
(ii) the microphone is an ideal point receiver, and (iii) the source
signal is an ideal N wave. Finally, the ;ffects of finite receiver size
and atmospheric absorption are included in the frequency-domain solution,
and the reflected pulse time waveforms are computed by application of a
digital fast Fourier transform (FFT) routine. Waveforms determined
from the analytical results are presented in this chapter, while results
from the digital computations are delayed until Chapter IV.

A. Mathematical Formulation of the Problem

The experiment is analyzed mathematically as a boundary-value
problem. The tube is considered a rigid boundary, infinite in length,
and the spark is assumed to be a point source located on the tube axis.
The medium, air, is a relaxing, thermoviscous (i.e., viscous, heat con-

ducting) fluid. Sound propagation is assumed to obey the linear
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thermoviscous wave equation. Molecular relaxation, which causes
dispersion and absorption, is omitted from the initial statement of the
problem. Dispersion is small enough to be neglected. Absorption, on the
% other hand, which depends on frequency, humidity, temperature, and ambient
pressure, is important and must be included in the analysis. It is
accounted for ad hoc: After the problem is solved for a nonrelaxing
fluid, the effects of relaxation absorption are simply added to the result.
First, however, the inhomogeneous, thermoviscous wave equation is derived
from the inhomogeneous equation for a lossless medium and the homogeneous p
equation for a thermoviscous medium.
The linear homogeneous wave equation for a lossless fluid is
Vzp - c;2 Py = 0 s (3.1)

>
i i where p=p(§,t) is the acoustic pressure, R is the vector propagation path,

¢ 1is the small-signal sound speed, and subscript t denotes differentiation with
o

respect to time. The solution of Eq. (3.1) for spherically symmetric outgoing

waves is ;
Rp = f(t—R/co) s (3.2)
. where f is an arbitrary function of its argument and RE|§|. The pressure
< 3
S radiated from a point source located at R0 satisfies the following :
by
E,f inhomogeneous wave equation:39
> |
3
1 _
& Vo - 2 = -tm£(r) 8B, (3.3)
i o tt
¢
3 where § is the Dirac delta function and f satisfies the homogeneous
N equation, Eq. (3.1), as above. If the amplitude and time dependence of
LI
" the pressure at radius Ro are defined by Po and N(t), respectively, then
!"1 we may write
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f(t-Ro/co) = ROPo N(t-Ro/co) (3.4)
Furthermore, if we let Rd+0 and Pd+w in such a way that the product
RoPo remains constant, then we obtain
f(t-RO/co) + f(t) = RoPo N(t) (Rd+0) .
The inhomogeneous wave equation for a lossless fluid containing a point
source may now be expressed thus:
2 -2 _ >
v'p - €y Pep = 4nPoRo N(t) S§(R) . (3.5)
The linear, homogeneous wave equation for propagation in a
thermoviscous gas is+’40
2.1 A+ 2,y -1} q 2 -
Ve 2ptt+[ vt ] 7 VP =0 (3.8)
C p c
o o o

where

)L and p are the dilatational and shear coefficients of viscosity,

respectively,
Yy is the ratio of specific heats,
Pr is the Prandtl number, and

Py is the ambient density.

It is assumed that the point source expression derived for the lossless

medium and given by the right hand side (RHS) of Eq. (3.5) is also

+Note that Eq. (3.6) is approximate; thermal and viscous terms have been
combined.

. |
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applicable in the case of a thermoviscous medium. The inhomogeneous,
thermoviscous wave equation is therefore

: 2 1 vl 2 >

. Vp - cz Pre + 5 v P, = -lmPoRo N(t) §(R) s (3.7)

o o

where

v = u/p0 is the kinematic viscosity, and

_)\+2u+y—1
u Pr

Let us now specialize Eq. (3.7) to our particular boundary value
problem. We choose an axisymmetric cylindrical coordinate system in r and
x [see Fig. 3.1(a)]; then we have

p = p(r,x,t) ,

and
' 2 13 3 52
Vo=t (r 5?) t
3x
r = o dludililpiiadidiaaniy LUl
v - P -
5 — = -—- P -
o
1
cony VUL L L VL L L
‘
- 3 (o) SPACE VARIABLES (b) TRANSFORM VARIABLES
X
) FIGURE 3.1
« AXISYMMETRIC COORDINATE SYSTEM
", AS-80:1363
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Noting that by definition the integral of 6(§) over all space is equal to
unity, one may easily verify that the axisymmetric delta function located
at r=0, x=0 is given by1L

s = “f X . (3.8)

Finally, the linear thermoviscous wave equation, with a point source of

amplitude P R and time dependence N(t), is
00

2. 1 o200 8§(r) 8(x)
vp C2 ptt + cz v P, 4P°Ro N(t) " . (3.9)
o o

Our experimental system is bounded by a rigid tube of finite

length. One end is terminated by the rigid microphone baffle, the

other end by an absorptive fiberglass plug. Forward traveling waves are
reflected once by the baffle and then absorbed by the fiberglass; backward
traveling waves are absorbed directly. The microphone actually senses each
wavefront more than once. First the "primary" wave sweeps across the
baffle. Then a 'secondary” reflected signal, generated by the incident
wave at the junction of the baffle and the tube wall, sweeps back across
the baffle. When the reflected wave again reaches the tube wall, it in
turn generates a twice-reflected wave, and so on. It turns out that the
secondary waves reflected from the baffle/tube junction are of little

consequence. They appear as noise between or added to the primary pulses.

1.

Note that Jf §(r)dr = %, because the radial coordinate r cannot be negative.
[s]
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Although they have some effect on the measurements, we choose, for the sake
of simplicity, to neglect their presence in our theoretical analysis.

Hence, the waves of interest (the primary waves) are equivalent to the

waves that would be observed in an infinitely long tube. The simpler case,

an infinitely long tube of radius a, is chosen for our mathematical model.

Boundary conditi s are given as follows:

p finite at r = 0 (in the absence of sources) (3.10a)

p_. =0 at r = a (rigid wall condition) (3.10b) !
T

p_=0at r = a (no slip condition). (3.10c¢) i
b4 i

where subscripts denote partial differentiation. Since we have decided

to neglect boundary layer absorption, we will neglect the axial boundary

condition, Eq. (3.10c¢c), and retain only conditions (3.10a) and (310b).

Our method of solution hinges on the fact that only in the radial
direction is there a boundary; both x and t are infinite in domain.
Fourier transform techniques are used to reduce Eq. (3.9) to an ordinary
differential equation in r. The boundary conditions Eqs. (3.10a,b) are
then applied, and finally the inverse transforms are performed.

B. Fourier Transform t->w, x>¢

Let P be the Fourier transform of p with respect to time,

P(r,x,m) = jlp(r)xot)] = / p(r,x,t) e—jmt dt . (3-11)

@
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If we transform Eq. (3.9) according to Eq. (3.11), we find that P is a
solution of the inhomogeneous Helmholtz equation*
v2p + k% = -4P R F(w) o(x rG(x ’ (3.12a)
in which
K2 = (w/co)z/(l + jwv F/ci} (3.12b)
and
) 2
Fw) = ?[N(t)]/(l + jwv r/co) . (3.12¢)
We may similarly define the Fourier transform of P with respect to the
axial coordinate x by
%o k3
P(r,g,0) = P(r,x,w) ngx dx . (3.13)
-0

Transforming Eq. (3.12a), we obtain an inhomogeneous form of Bessel's equation

of order zero

13 25 S(r
: (rPr)r + %P = ~4P R F(w) ——(—lr , (3.14)

where the radial wave number p is defined in terms of the axial wave

number £ by 02=k2—£2. The transformed boundary conditions are

P finite at r = 0 [for the homogeneous solution of (3.15a)
Eq. (3.14)]

P =0atr=a . (3.15b)

+It'. can be seen by inspection that if other agencies of dissipation, e.g.,
relaxation, are included in the original wave equation (3.9), the expres-
sions for k and F would have been more complicated. Such a possibility

is considered in Section E.
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The propagation constants £ and p may be thought of as the projections of

the vector wave number K on the axis and the source plane, respectively.
If 6 is the angle E makes with the axis, then £ = k cos8 and p = k sinb
(see Fig. 3.1(b)].

C. Solution of the Radial Equation

The general solution of Eq. (3.14) is the sum of a particular
solution §p’ which satisfies the inhomogeneous equation, Eq. (3.14), ;
and a complementary solution §c’ which satisfies the associated homogeneous

equation. The total solution must satisfy the boundary conditions on P at

r=a and r=0. The complementary solution may be written at once:

EC = A Hél)(pr) + B ng)(pr) ,

where Hél)(z) and Héz)(z) are zero order Hankel functions of the first and

second kinds, respectively, and A and B are constants to be determined from

the boundary conditious.

The inhomogeneous equation has a singularity at the point r=0.

We now proceed to determine a Green's function solution which has the

correct behavior near the origin, as well as in the farfield. Our method

closely follows that of Morse and Feshbach [Ref. 41, pp. 808-811]. Let

- G(;) be the solution of the following dimensionless form of Eq. (3.14):
- v% + o2 = ~4m 5D . (3.16)
* 1
v a
‘ In the present case, the axisymmetric, two-dimensional Laplacian and the
] radial delta function are defined by
[ 2.la 2y
. | Vo= \Far
x -
& §(r) = (2/r) () , r = x|
»
>
3
F,
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It is evident that, since the source is omnidirectional, the behavior of
G for small I;l must also be omnidirectional, i.e.,
¢@® »gm (>0 .
First let us integrate Eq. (3.16) over a small circular area

of radius e. Since the integral of the delta function is unity, we have

f v2G dA + pzf G dA = -4m . (3.17)
A A

In the limit of vanishingly small e¢, we may replace G with g. If it is
assumed that the Laplacian of a singularity is more singular than the
singularity itself, the second integral may be neglected, and we are left
with

f vlg dA = <41 (e40) . (3.18)
A

Next, Gauss' theorem is employed to transform the area integral into a

line integral around the perimeter of the circle,
>
ng o dr = =471 (e>0) . (3.19)
c

Since g depends only on r, Vg=gr is everywhere parallel to d?. We can
now solve for the behavior of g near the origin by evaluating the line
integral,

2m = =4 (e>0) s

or

g(r) = -2an(r) (x~0) . (3.20)

Apparently, we were justified in neglecting the area integral of g.
Since Eq. (3.14) is a form of Bessel's equation whose RHS

denotes a source, we wish to find a Bessel~type solution for outgoing
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waves that has a logarithmic singularity at r=0. In fact, the zero order
Hankel function for outgoing waves has the required properties (see, for

example, Ref. 41, pp. 890-891]:

8@ - 2@ (o), (3.21a)

1/2
82 » (%) ewl-ae-n/i)  (z] v = . (3.210)

Hence, the particular solution of Eq. (3.14) is+

Bo= -y R F BB o) (3.22)

The general solution is given by the sum of ﬁc and ﬁp’ i.e.,

PeanPen +3uP0n -y r F BP0, (.23)

and the boundary conditions, Eqs. (3.15). The behavior required by
Eq. (3.15a) is already satisfied by the third term on the RHS of
Eq. (3.23). The first two terms must therefore cancel each other as r-0.

The small argument behavior of H(Z)

N (pr) is given by Eq. (3.21a).

Similarly, Hél)(pr) behaves thus:
Hél)(or) - ;2;1 n(pr) ([or{+0)
The first boundary condition therefore becomes

Anpr -Bnpr=0 (r-0) ,

or

B=A . (3.24)

| -
fHad he forcing function on the RHS of Eq. (3.16) been 418(r) instead of
-418(r) (i.e., a "sink" instead of a source), the correct solution would
have been the Hankel function for incoming waves jnPoRoF(w)Hol)(pr).
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The pressure is

P = A[H(()l)(pr)ﬁlc()z)(pr)] - jmP R F(w) H((’?') Gr) . (3.25)

The matching coefficient A is determined from the boundary
condition at the tube wall. Substituting Eq. (3.25) into Eq. (3.15b), we

obtain

2n3P°R0 F(w)

A= : s .
1+ [H{l)(pa)/ﬂiz)(oa)]

(3.26)

The transformed pressure P(r,£,w) is completely determined by Eqs. (3.25)

and (3.26). Noting that
21 L (2) ]
Jm(z) > [?m (z)+Hm (z) , (3.27)
we find for the exact solution,

-1
P = POR0 F(w) { - jﬂHéZ)(pr) + 2an0(pr)[} + H;l)(pa%/ﬁiz)(pa{] z .

(3.28)

Alternatively, the expression for A may be expanded as a power series

i n
A= -21jP R F() ¥ (-1)“[u{2)(pa)/nil) (pa)] . (3.29)
n=1

Then Eq. (3.25) assumes the form

[o]

o - N
P=PR FW —3m‘? (or) + 2130 _(pr) nE=1 (-l)n[ﬂiz)(pa)/ﬂl(_l)(pa)—l i :
(3.30)

No technique has been found by which to calculate the exact

inverse transform of P. We must therefore make some sort of approximation
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prior to attempting the inversion. One approach is to invoke the short
wavelength assumption upon which any 'geometric acoustics'' model is based.
Specifically, we require that [pa|>>1. The validity of this assumption
will be investigated later. Here it is sufficient to note that the range
of |ka| important to the present problem lies above 5. Given the large

argument behavior of the Hankel functions,

1/2
H;l)(z) ~ (%) Jlz=(u)n/a)
1/2
H;Z)(Z) ~'(%;) e-j[z-(2m+1)n/4] (|z]>>m) ,
one may easily show that
(2)
H (pa)
L ~-j 3203 (pal>>1) (3.31)

Hil)(oa)

This relation is substituted into Eq. (3.30) to yield the following

approximate solution for the transformed pressure:

P=pR F(m)[—jﬂﬂ(z)(pr) + 213 (o) 3 5L e'jzn"a] . (3.32)
o o [o] (o] n=1

At this stage in the analysis, a correspondence between the
experimental and theoretical results becomes apparent. The first term in
Eq. (3.32) can be recognized as the direct wave; it is the only term with
a singularity at r=0. It turns out that the terms in the series represent
the sequence of reflected signals observed at the microphone. The presence
of the factor jn-l indicates that the phase changes by n/2 from one

reflected signal to the next. The implication of the factor exp(-j2npa) is

- R -y - . i e T T S
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that the distance traveled increases with n. We shall return to this point
in the analysis after a brief digression, in which Eq. (3.30) is rederived
via a more physical approach, the method of images.

D. Alternative Derivation of the Guided Pressure Field--The Method

of Images [see Ref. 41, pp. 812-816]

The guided pressure field may be built up as a superposition of
waves that originate at ring-shaped image sources and propagate in an
unbounded medium (see Fig. 3.2). Let the microphone (M) be located a dis-
tance L from the real source. The image sources lie in the plane x=0, and
their radii rn are integer multiples of the tube diameter, i.e., rn=2na.
All of the ring sources '"fire'" simultaneously, but the waves emitted are
not all the same. Indeed, the relative amplitude and phase of the signals
emitted by each pair of adjacent rings is determined from the boundary
condition at r=a. For r<a the field produced by the image waves is the
same as the actual reflected field.

Each of the signals emitted by the image sources corresponds to
a real wavefront that is confined by the tube. For example, the signal

originating at the first image source S, corresponds to the wave that is

1

reflected once from the tube wall at the point r=a, x=L/2 (denoted by

All in Fig. 3.2). 1In fact, the real and image waves coincide on the ray

segment AllM' Like the real wave, the image wave focuses at the microphone;

the angle of incidence is denoted by 61. The wave emitted by the second

image source S, corresponds to a wave that is reflected at the points A21

2

(r=a, x=L/4) and A r=a, x=3L/4). Between reflections the real wave

22 ¢

passes through an intermediate focus, labeled O The reflected wave and

1

the second image wave meet at A22 and impinge on the microphone at angle
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02. The twice-reflected wave and the first image wave intersect at A21'
In general, the nth arrival after the direct wave undergoes n reflections
and passes through n-l1 foci before it reaches the receiver, and at each
reflection point Ani (i=1,2,...,n) the nth reflected wave meets the ith
image wave. Both leave the point Ani at angle en with respect to the axis,
focus at Oi, and diverge to An(i+1)' There, the ith image wave continues
to diverge, but the bounded wave takes the value of the (i+l)th image wave.
The nth reflected wave travels along the path of each image wave
(i=1,2,...,n) in succession until it reaches the microphone.

The total signal received at the microphone is equal to the sum
of the signals received from the real source and from the ring sources.
The transformed pressure may be written in the form

B(r) =By (r) + 3 By() (3.33)

n=1

where w=win+wout denotes the behavior of the incoming and outgoing image
waves in the radial direction, and the Bn are constants to be determined
from the boundary conditions. The first term (n=0) corresponds to the
direct wave, and the rest of the series (n>0) corresponds to the sequence
of image waves. The functions win (incoming waves) and wout (outgoing
waves) are solutions of the inhomogeneous form of Bessel's equation,

Eq. (3.14). It has already been shown that the solutions for incoming and
(2)

outgoing waves are proportional to Hil)(or) and Ho

(pr), respectively, and
that the direct wave is given by the particular solution of Eq. (3.14),

i.e.,

BY_ = TP R, Flu) 1D e . (3.34)




The boundary conditions at r=0 and r=a are used to determine
the coefficients Bn and the function Y. The particle velocity must vanish
at r=a; alternatively, the pressures of the incoming and outgoing waves
| K must be equal there. Consider the case n=1l. At the point All the wave

diverging from (0 meets the wave converging from S The outgoing pressure

1
. (2) 1)

wave is of the form BoHo (pr), and the incoming wave is BlHO (pr).

Equating the pressures at r=a, we find that the signals emitted by the first

ring source and the real source are related by

B1/Bo = Héz)(pa)/ﬂél)(pa)

Similar use of the boundary condition at A22 results in an expression that

relates the waves emitted by the first and second ring sources,

B,/B, = 5D o)/ 0a)
whence
2
B,/B_ = [ng)(pa)/ﬂél)(pa)] .

In general the signal originating at the nth image source is related to

the signal leaving the real source by

n
B /B = [ﬂﬁ” (pa) /D (pa)] : (3.35)

(o]

Since both incoming and outgoing waves are present in the tube, U

must be a linear combination of Hgl)(pr) and ng)(pr). The only such combi~

nation that satisfies both of the boundary conditions is

Y = Hc(,l)(or) + Héz)(or) s

e T
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or, by Eq. (3.27),

v = 2Jo(or) . (3.36)
Substituting Eqs. (3.34), (3.35), and (3.36) into Eq. (3.33), we obtain

for the pressure

n
[H(Z) (pa)/H(l)(pa)] z

P=- POROF(m) jnﬂgz)(pr) + 2ano(pr) 2: o o

=1
(3.37)

which may, with a little algebra, be put in the form of Eq. (3.30),

section C.

E. Inverse Fourier Transform £ +x: Method of Stationary Phase

Having found a solution in r subject to the boundary conditions
at r=a and r=0, we now compute the inverse Fourier transform £ -+x to
re.uver the pressure as a function of space and frequency. The inverse

transform of Eq. (3.32) is

oo

2] -
P(r,x,uw) = PR F(w)(—j/2)/ Héz)[r(kz—b;z\) ] LR T 5

~ n=1
(3.38a)
where
® 1/2 1/2
- A 2 .2
P = PR Fw) §® 1 J{; Jo[%(kz-ﬁz) ] exp[—jgx-JZna(k -£ > ] dg .
(3.38b)

Evaluation of the first integral in Eq. (3.38a) yields the following ex-

pression for the direct wave:
e-ij
PoRo Fw) R ’

where

2 2 1/2
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In order to compute Pn we make the substitution £ = k cos6, where
# is the angle between the propagation vector k and the tube axis (see

Fig. 3.1(b)] and 0%6<w., With this change of variables Eq. (3.38b) becomes

n-1 ™ —jk(xcose+rnsin6)
P =P R F(w) j e J (kr sin6)k sind de .
n ) 0 o
(3.39)

where rnEZna. The expression for Pn contains an integral of the general

b
1= / £(9) eks(e) de ,
a

where Im{kB)}#0 and Re[kR]<0 (recall that Im[k}<0). This integral is now

form

evaluated for values of lk8|>>l by the method of stationary phase. For a
concise description of the method the reader is referred to the work of
Sneddon.42 Observation points very close to the axis are considered first;
later the case of off-axis points is treated.

Let us assume Im[kR) is large enough that exp{kB(8)] varies
much faster than £(68). Then the integrand oscillates rapidly over most

of the domain of integration. However, when 8 is equal to Gn, which

satisfies the equation

B'(Sn) =0 s (3.40)

the exponential is constant. For this reason Gn is called a "stationary
point" of the integrand. It turns out that for large values of 'ksf the
dominant contribution to the integral is accrued in the immediate vicinity

of Gn. The result of the integration is+

2

™ du

«©
+Thete is an error in Smeddon's final calculation. The integral'llu)e
is equal to V7.
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kB (6 )
I1=e n f(en)[-znlke"(en)]l/2 (JkB| » =) . (3.41)

The amplitude and phase functions specific to our problem are

£(6) = k siné Jo(kr sing)

and

g(8) = —j(rn sind + x cos8)

Both f and B oscillate rapidly when |k8| is large. In the present problem
krn and kx are much larger than kr. The assumption that exp[kR(0)] varies
more rapidly than f(g) is therefore valid. Separate consideration of the
integrand for 0<0< /2 and n/2<6<n leads to a solution of Eq. (3.40)
that defines two stationary points. For values 0<6<1/2, which implies
that the receiver is located at a range x>0, there is one stationary point,

defined by
r
6 = tan b B (3.42)
n X

Equations (3.41) and (3.42) are used to reduce Eq. (3.39) to
~jkR
_ L 1/2 .n-1 _-1/2 . n
Pn(r,x,w) = PORO Fw) (273k) 3 Rn s1n6n Jo(kr 51n9n) e .
(3.43)

1/2
where R = (x2+r2> , and j
n n

1/2 _ ejn/4.

In essence, the method of stationary phase is a vehicle by which
we can determine the trajectory en of each reflected wave and the contribu~
tion Pn of each reflected wave to the total signal received by the micro-
phone. Although the source radiation is uniform in all directions, only

those rays for which 6=8n (given by Eq. (3.42)] contribute appreciably to

the received signal.
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!

The implications of Eq. (3.43) are most interesting. The nth
reflected wave travels a total distance Rn’ which is the distance between

the receiver and the nth image source (see Fig. 3.3). The signal is

diminished by cylindrical spreading and atmospheric absorption over the
entire travel distance. At the same time, its amplitude varies with r
according to the Bessel function factor. The amplitudes of successive
reflections increase as sinen, and as has been noted, the phase lag
increases in increments of n/2.

Consider the functional dependence of P on k as r-0. The Bessel

function tends to a constant, and the wave number appears only in the

Ry- Ry - R+ Ry3

FIGURE 3.3
TRAVEL PATHS OF REAL AND IMAGE WAVES
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factor (jk)l/z. Here the relationship between spherical and cylindrical
focusing is brought to light. It is well known that the waveform that
exists at the focus of a three-dimensional mirror is equal to the deriva-
tive of the convergent reflected signal (see, for example, Cormnet,

Ref. 25). The Fourier transform of the derivative of a function g(R) is

given by

3[5s@)] - om0

where R is the distance from the focus, and G(k) is the Fourier transform
of g(R). Blackstockl’3 has described an analogous "half-derivative"

operator whose Fourier transform has the following property:

3 31/2 Ly = (‘k)l/zck)
BR]'/Z B = \] ( .

One mav thus speculate that a general focusing factor for the transform
space is expressed by (jk)t, where ¢« =1/2 for two-dimensional waves and
+=1 for three-dimensional waves.

When the observation point is far enough off-axis that
kr sind >> 1 (which requires r ~> 0.3 c¢m when £ = 30 kHz and ezel in the
long tube), the stationary phase integration must be redone because the
phase information in the Bessel function must be included im kg. Consider
the integral solution given by Eq. (3.39). The Bessel function mav be

replaced by its large argument, asvmptetic expansion

Jokz) ~ (:,,Z)-l/z [Qj(!—»"w/&\ + e-j(z—“/é\] (TZ‘\\l) .
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Then Eq. (3.39) becomes
= a-1,, . -1/2
P =PRFW ] (2m3r)

w( -jk[x cos8+(r -r)sing)}
X ie n

)

-jk[x cose+(xr +rysind]
+ e " t(k sine)l/z ae
The two

The integral is evaluated by the method of stationary phase.

terms in the integrand have different stationary points enl and an,

respectively, given by

rn -t T
tanﬁ e —— tanG -
nl X n b
rn + r r

tanbd = o = tanf_+ =~ .
n2 X n X

The result for the pressure is

B n-1 -1/2
P= POROF(w) h] r

. 1/2  -3kR ind 172 R

5ind 3 sin 3

x {(_b____&) e ni + J(—-r!l‘z'\) e nZ] , (3.64)
n2

Rnl
where
Rnl = (x coanl + (rn—r) Sinenl)
an = (x cosenz + (rn+r) sinenz)
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The RHS of Eq. (3.44) represents a sum of pre-focus and post-focus waves

/2

(see Fig. 3.4). The focusing factor (jk)l found in Eq. (3.43) is not

present in the off-axis solution. Instead there is an amplitude depend-

ence of r—l/z.
For small values of r/x and r/rn, it can be seen that
tan® _=tanB ,>tan® and, furthermore, that R =R =R Under such condi-
nl n2 n nl n2 n.

tions Eq. (3.44) may be rewritten in the form

-jk(R_-R") -3k (R _+R")
-1 -1/2 J
P =P R F(w) Jn (rrn) / sing_|e n +3j e n

(3.45)

FIGURE 3.4
OFF-AXIS GEOMETRY
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Now let us determine the importance of the fact that k is
complex. The main effect of Im[k] is to produce attenuation of the waves
as they travel along their respective rays. For waves traveling away from

the source, the complex wave number may be expressed thus:

k = w/co - ja(w) = (w/co)(l-jaco/w) , (3.46)

where use has been made of the fact that the phase velocity is very nearly
equal to S for f << 100 MHz. The absorption coefficient a(w) includes

the effects of viscosity, heat conduction, and molecular relaxation. For
the frequencies of interest, a(w)<<m/co. Equation (3.46) is now introduced
into Eq. (3.43). The complete expression for k as given above is sub-
stituted directly into the phase delay term exp(-ijn). The two factors
exp(—ijn/co) and exp(-aRn) thus obtained represent phase delay and
attenuation, respectively, over the path length Rn' Since Im[k]<<Relk] we
neglect Im{k] in the argument of the Bessel function.

2p(0) on a(w):

1/2 -1 ¢ alw)\L/2
(—2’—) 3[N(c)](1+j %F-> (1-j 2 )

o C
o

1/2 c o
w vla N ) wvl
(C ) 3'[N(t)] [1 - 2¢c - J(zw + 2 ) + "‘] )
o o <,

] . 2
where terms of greater than first order in coa/w and vw/co have been

Next consider the dependence of kl

k1/2 F(w)

13

neglected inside the brackets. For f < 1 MHz only the first term in the

brackets is appreciable. The following substitution is therefore made

in Eq. (3.43):

4

1
3
1
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1
HErw = (we )P Fmm] ¢ < 1w .
The general solution for the pressure field now assumes the form
P(r,x,w) = P, + > . (3.47a)
n
n=1
where
PR .
P, = =23y IR (3.47b)
. \1/2 -jkR
- 2njw .n-1 -1/2 W . " n
P POR0< Co ) 3 R sing Jo . r sind FIN(R)] e .
(3.47¢)

and k is given by Eq. (3.46).

The approximate frequency domain solution given by Eqs. (3.47)
is valid under the assumptions that ]ka)>>l and f < 1 MHz. For our tube
(a = 2.54 cm) these conditions are roughly equivalent to

4. f < 106 Hz. The solution is valid for any signal, broadband or

2 x 10
pure tone, whose spectrum falls principally in this frequency range.

F. Inverse Fourier Transform w>t: Analytical Evaluation

Under certain conditions the inverse Fourier transform of

Eqs. (3.47) can be calculated analytically. The inversion formula is

p(r,x,t) =—§; f P(r,x,0) e dy . (3.48)
-0

As a first approximation to the measurement conditions it is assumed that

the medium is lossless [a(w)=0] and the microphone is an ideal point

receiver (microphone radius+0). The pressure signal P4 corresponding to
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the direct wave is readily obtained. Substitution of Eq. (3.47b) into

Eq. (3.48) yields

PR
py(r:x,t) = 2 N(t-R/e)) (3.49)

a result that is valid both on and off the axis. Calculation of the
reflected signals P, is somewhat more difficult. First, the pulse wave-
forms that would be measured by a point receiver on the axis (i.e., at a

focus) are computed; then the results are compared with computed off-axis

waveforms.

We wish to find the on-axis time waveform for the nth reflected
wave by evaluating the inverse Fourier transform of Eq. (3.47c) for r=0.

Setting r=0 and rearranging terms, we can write Eq. (3.47c) in the form

- -jwR _/c
Pn = PoRo sinen (ZIQORn>1/2 jn 1 (Tr/jw)l/2 juw FN(t)] e noo .

(3.50)
We first proceed to find the inverse transform of

"L a50t? 50 Fn ]

as a function of t, and then note that if we include the factor

exp(-ijn/co), the result is unchanged except for a time shift t+t-Rn/c°Et'

(t' is the retarded time).

Notice that the phase shift factor jn—l is real for odd n and

imaginary for even n. In particular,
Lo @bz e,

jn—l - j(_l)(n-Z)/Z , n even .

e e Naakeo e . PR
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Moreover, in order for P, (n even) to be a real function of time, the 90°

phase shift j must be interpreted as +j for positive frequencies and as

-j for negative frequencies, or vice versa (this fact is proved in Appen-

dix A). 1In other words, let

3+ j sgn(w) ,
where
1 s w >0
sgn(w) = 0] s w=20

-1 , w <0

Now consider the function

6w = 3" (/3?2

It is convenient to write the inverse Fourier transform of Gn(m) as a

convolution of time functions. The following transform pairs are used:

/2 - t-1/2

(/30
ju F(N(t)] < N'(t)
j sgn(w) -(nt)—l

For odd values of n Eq. (3.51) takes the form

¢ @ = 1D 2w u3mer

whose inverse Fourier transform is given in integral form by

Ju FIN(E) ] . (3.51)

3'l[cn(w)] = (-1 (m-D)/2 / -2 nroy dv . (3.52)

00
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1f we introduce the dimensionless times ¢-t/T° and T"T/To, where To is a

characteristic time, then Eq. (3.52) becomes

F e 1 =DV Y2 () (@ ed) ,  (3.539)
where
A, (9) = / BED g (3.53b)
-0 ¢ - T'

For even values of n Eq. (3.51) takes the form

6 @ = DD 5 egn@) w/w? JuIMEW1 , (3.53)

and its inverse transform is

36 ) = (D200 (oeven) (3.54a)
where
© A, (¢)
1 1 ,
ORE /_; A (3.54b)

Finally, we use the time shift property of the Fourier transform

-jwR_/c
FlA(E)] e

(o]
> A(t-Rn/co) .

where A is an arbitrary function, to obtain the on-axis pressure

pn(o,x,t) = PoRo(z/coToRn)l/z sinen (_1)(n-1)/2 Al(¢) (n odd) (3.55a)

n/2

pn(O,x,t) = PORO(Z/coToRn)l/2 sinen (-1) A2(¢) (n even) ,

(3.55b)

where now ¢ denotes the dimensionless retarded time

¢ = t'/To . (3.55(:)
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Up to this point the two functions A, and A2 are perfectly

1
general, since N(t) has not yet been defined. Regardless of the waveform,

-1/2

it may be observed that (1) the amplitude depends on Rn

sin® , which
n
is a function of the tube radius and the receiver location, and (2) there

is a 180° phase shift every time n changes by 2. The 90° phase shift

between consecutive arrivals, given in the frequency domain as j sgn(w),
is manifested in the time domain as a convolution with —l/nTo¢ [see
Eq. (3.54b)].

To illustrate the changes in shape and amplitude suffered by a

small-signal N wave, we evaluate P, for the ideal N wave function

N(t) = -(t/To) rect[t/ZTo] s (3.56)

where To is the half-duration and

1, lt] < T,
rect[t/ZTo] ={0 , lt] > T,
1/2 , |t] =T,

In terms of the retarded time ¢, N is given by

N(¢) = -¢ rect[¢/2] s (3.57)

and the derivative of N by

N'(¢) = - -%—- rect [(¢~1)/2] + §(¢-1) + 6(¢p+1) . (3.58)
o]

Because N(9) is discontinuous at $=*1, each of the integrals defining

/\1 and A2 must be evaluated over the three regions ¢<~1, -1<¢<1l, and ¢>1.

Substituting Eq. (3.58) into Egqs. (3.53b) and (3.54b), we obtain




0 ’ ¢ < -1
p @) = { @2 L aesnt/2 L<$<1
@12 4 ey V2 4 M2 C 2eept? 4> 1
(3.59%a)
H
and %
i
02 4 1m0 V2 4 292 2a-0)M2 L 4 < a1
noy = {a-0 2 220t <<l
0 . ¢ > 1 . g}
o
(3.59b) .

The solution for the pressure signal pn(O,x,t) is given by Eqs. (3.55)
and (3.59).

Pressure waveforms corresponding to the first four reflected pulses i
in the short tube (x = 0.074 m) are plotted in Fig. 3.5. The direct arrival
is an ideal N wave whose half-duration is 4.0 usec and whose peak pressure
amplitude is Po at the receiver (for simplicity we have chosen Ro=x). The

amplitudes of the computed waveforms have been normalized with respect

. to Po. It is immediately apparent that the focusing process produces

waveforms differing considerably in shape and amplitude from the direct

Ny
. N wave. First of all, in each reflected wave the amplitude is infinite
} ! at ¢=t1. We should expect the pressure to be limited in a real medium
’% by finite amplitude effects and absorption. Because for our particular
; geometry the amplitude factor sinen/Ri/2 varies little over the range
> l<n< 4, the amplitudes of the four pulses are nearly the same. Finally,
.; it is most interesting to observe that each pulse has either a precursor

Tt e
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or a tail. Nonzero pressure is predicted for either ¢<-1 or ¢>1, depending
on n. Even-numbered waveforms have precursors and odd-numbered waveforms
have tails. It will presently be shown that at off-axis receiver positions
every pulse has a precursor and a tail.

The off-axis solution given by Eq. (3.45) is a good approximation
if kr sinen >> 1. Let us now calculate the inverse transform of Eq. (3.45).
We observe that the signal at (r,x) is composed of an incoming wave, which
crosses the axis at some position xin>x, and an outgoing wave, which
has already passed through a focus at xout<x. Consider the wave corre-
sponding to n=1l, The incoming signal is an N wave, and the outgoing signal
is shifted by m/2 radians. Recall that a phase shift of m/2 corresponds
to convolution with -1/nt, If the time dependence of the incoming signal
is

N($) = ~¢ rect[¢/2] .

then the outgoing signal is proportional to

Nn/2(¢) = —n—l -/—; (¢—T)—l N(t) drt

_1 ¢ + 1] _
= . (q)R,an) = l‘ 2) > (3-60)

where '3[N“/2]=j JF[N]. Now consider the off-axis waveforms associated with
the signal identified by n=2. An observer sees a pre-focus wave propor-
tional to N“/2 followed by a post-focus wave proportional to N“, i.e., an
inverted N wave. Similar arguments may be advanced to determine the wave-
forms for each pair of ray paths corresponding to the general index n.

The effect of a pure phase lag on an ideal N waveform is

illustrated in Fig. 3.6 for phase lags equal to integer multiples of w/4.
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The odd multiples are included for comparison with the on-axis waveforms

(see Fig. 3.5). Noting that

/ -1/

exp(jn/4) F[N] = 271 2(1 + ) FIN] = 2 23’[N + N

n/Z] ’

one sees that waveforms computed for the odd multiples of w/4 are just

scaled superpositions of N and N In every case both precursor and

m2°

tail exist and are symmetric about the origin. Although the figure may

seem to indicate otherwise, the amplitude is infinite at ¢=*1. There are,
however, no jump discontinuities like those present in the on-axis wave-
forms; the signal increases (or decreases) smoothly to = (or -«).

It is not really appropriate to compare the measured waveforms

presented in Fig. 2.5 with the waveforms predicted here. Recall that

in the interest of simplicity medium losses were neglected and the
microphone was assumed to be a point receiver. Furthermore, the direct
signal was taken to be an ideal N wave, small enough in amplitude that
nonlinear distortion could be neglected throughout the tube. In the fol-
lowing section, atmospheric absorption and microphone directivity are
included in a computer routine developed to calculate more realistic

waveforms.

G. Inverse Fourier Transform w>t: Digital Evaluation

In this section, a computer routine is developed which, given
the asymptotic solution in the frequency domain, Eqs. (3.47), enables
one to calculate and plot the reflected waves for an arbitrary direct

waveform.+ The effects of atmospheric absorption and microphone

; +The direct waveform cannot be completely arbitrary. It must still
i satisfy the limitations on ka which were noted at the beginning of the
!" previous section.
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directivity are included in the calculation. Results for both ideal and

measured direct N wave inputs are presented in Chapter IV,

1. Receiver of Finite Dimensions. Let us consider what happens to
the observed waveforms when the receiver is a baffled piston of finite
size (recall that our microphone is baffled to avoid the problem of dif-
fr.oction from the edge of the housing; see Section A.3, Chapter II).

A pressure front incident on the face of the microphone at an angle 6>0
takes a short time to traverse the active area. The instantaneous output
of the microphone is proportional to the integral of the instantaneous
pressure over the entire active area. Calculation of this integral in the
time domain is entirely equivalent to calculation of the frequency direc-
tivity characteristic in the frequency domain., We pursue the latter
course for the case in which the pressure field is symmetric about the
axis of the piston.

An axisymmetric pressure field incident on the microphone face

at angle 6 referred to the axis may be expressed in the form

ik 6
P(r,x,u) = P_J_(kr sine) e ¥X €08 . (3.61)

The voltage output of the transducer is proportional to the average

pressure P on the face, which is, for a microphone of radius o,

A 1 o
- P(r,0,w)2rr dr
o 0

2J1(kosin6)

o ko sing

Lo~ ]
]

= POD(G) . (3.62)

Thus, it turns out that the directivity function D(8) is the same as that of a

piston in a plane wave field.

ik e i
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Now the axisymmetric reflected wave field described by
Eq. (3.47c) is of the form postulated in Eq. (3.61). Integrating
Eq. (3.47c) with respect to r, one may conclude that if a baffled micro-
phone of radius ¢ is used to sense the pressure on the axis of the tube,
the pressure response é to the nth reflected pulse wil. be
~ijn

1/2 .n-1

PR FIN)] @ty kr) "L/

ﬁn(o,x,w) 2 (2/0) Jl(kosinen) e

Pn(O,x,w) D(en) . (3.63)

where Pn and D(8) are given by Eqs. (3.47c) and (3.62), respectively.
This exceedingly simple result suggests that one may account for the fi-
nite size of the microphone by multiplying the on-axis, frequency domain
solution by the microphone directivity factor D(Bn). If the microphone
is not centered on the axis, D(0) must be expressed as a sum of higher
order Bessel functions, and the result for the pressure is not so simple.
2. Atmospheric Absorption. The effects of absorption and

dispersion on the propagating signal were introduced in Section E. There

it was argued that the complex wave number k could be written

k = (w/co) - joa(w) , (3.64)

where absorption « includes relaxation as well as thermoviscous
effects. Recently, the American National Standards Institute (ANSI)
published a "Standard Method for the Calculation of the Absorption of
Sound by the Atmosphere" (Ref. B.1l), by which one can compute o for given
frequency, ambient temperature, ambient pressure, and relative humidity.

A digital implementation of the method is stored in the user library at

e e K




|
|
i
%
! 72 H
Applied Research Laboratories, The University of Texas at Austin, under {
the function name ABSORP. g
Extensive experimental and theoretical documentation pertaining ;

to the atmospheric absorption of small-signal N waves is presented in

Appendix B. There a digital method is developed which allows one to com-
pute the attenuation of broadband signals according to the ANSI absorption.
Comparison of computed and measured N waveforms reveals excellent agree-
ment for the range of travel path lengths Rn encountered in the tube exper-
iment. Appendix B also includes an analytical approximation for a, valid
at very high frequencies, and an analytical solution for an attenuated
ideal N waveform based on that approximation. It was hoped that a method
similar to that used in Appendix B could be incorporated intoc the analysis
for focused, ideal N waves advanced in Section F of this chapter, but when

a straightforward approachi failed, this method of attack was shelved.

3. Program NTUBE. The computer program NTUBE computes waveforms
detected by a piston microphone centered on the axis of the tube. The
effects of both atmospheric absorption and microphone directivity are

included in the program. A simplified flow chart for the program is shown

in Fig. 3.7. The input is the direct time waveform pd(t') received at

position x. First the FFT of the input waveform is calculated in order

to obtain a frequency domain representatition of the signal Pd(fi)’ where
fi is the ith frequency component. Next ﬁn(x,fi) is computed according to
Egqs. (3.62) and (3.47¢): The phase of Pd(x’fi) is shifted by

(n/2 + 1/4)7 sgn(fi); then the focusing factor kl/2 and the microphone

directivity and atmospheric absorption factors are computed for each fi

and multiplied by Pd(x,fi) (absorption is applied over the difference in
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distance traveled by th: direct ans reflected waves). The inverse FFT of
the resulting signal is computed and multiplied by a frequency-independent
, 2 amplitude factor to yield the time waveform of the nth pulse. Finally
the subroutine PLTWAVE is called to plot the waveform,

The program has been used for ideal as well as measured N wave
inputs, slthough it is applicable to other pulse inputs as well.+ The
absorption and micropaone directivity subroutines are optional so that

the digital and analytical solutions for an ideal N wave can be compared

under '"ideal" propagation and measurement conditions [a(w)=0, D(en)=l].
Gibbs' phenomenon (see Ref. 41, pp. 745-748) was evident near the
{ discontinuities of computed ideal waveforms. Its amplitude of oscillation
was objectionably large, presumably because of the presence of the

1/2

h; frequency-dependent gain factor k The oscillations were damped by the

time domain filter thot precedes the plotting routine. Use of the filter

r is also optional.
All of the programming was done in FORTRAN on a CDC Cyber Series
170 computer. Listings for Program NTUBE, Subroutine PLTWAVE, and Func-

tion ABSORP (which calci'ates atmospheric absorption at each frequency fi)

!

are provided in Appendix C. Results for ideal and measured input N waves

. ."v'"
-—

are presented in the following chapter.

-
L3 J
ey
¢
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)
:% +Note that each reflected wave is computed independently; i.e., no attempt
4 is made to superpose several appropriately delayed pulses.
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CHAPTER IV

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS:

! SMALL-SIGNAL WAVES

The computer program NTUBE was used to calculate reflected
pulse waveforms. In this chapter results of the calculations are compared
with waveforms measured in the tube. First, however, the effects of
microphone directivity and atmospheric absorption on ideal waveforms are
investigated in order that the relative effect of each on the measured y
waveforms may be assessed. Then a measured direct N wave is used as an
input in waveform computations for the first four reflections in the
short tube; atmosplieric absorption and microphone directivity are included
in the calculations. Measured and predicted wave shapes are in agreement,
but the amplitudes of the measured waves are consistently lower than those
of the computed waves.

Next, the long time behavior of the mathematical solution is

analyzed by computing the "amplitude envelope'" discussed in Chapter II.

’ The peak-to-peak pressures of measured and computed pulse waveforms are
; S plotted versus reflection number n for propagation in the long tube. The

amplitude discrepancy observed in the comparison cf the first four

? 1 measured and computed waveforms persists throughout the range of n con- 4
"’ sidered (n=1-35). It is postulated that the disparity is due to misalign-
<
3 ment of the apparatus, boundary layer losses (which have been neglected in
- the analysis), nonlinear propagation distortion, or to a combination of
)
‘I all three. Quantitative evidence is given in this chapter that suggests
4 7
\
3
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(1) that a very slight misalignment can cause a discrepancy of the same
order as is observed, and (2) that by neglecting boundary layer losses,
we probably underestimate total absorption. Discussion of nonlinear dis-
tortion is delayed until Chapter V,

Finally, a sample off-axis waveform is presented. Pulses
corresponding to pre-focus and post-focus waves are observed.

A. Influence of Absorption and Microphone Directivity on the Pulse
Waveforms

The results described in this section include computations of
the first four ideal waveforms for cases in which the atmospheric absorp-
tion and microphone directivity are significant. Program NTUBE is used
to carry out the computations, and the direct signal is an ideal N wave.
To begin, however, the relative importance of boundary layer and main-
stream absorption effects are briefly discussed.

After giving much thought to the problem of how to include
boundary layer absorption in our theory, we decided to dispense with it
altogether and include only mainstream absorption. Consider the magni-

tudes of the plane wave boundary layer absorption a_ . and the mainstream

BL

absorption « S (which includes both thermoviscous and relaxation absorp-

M
tion) for frequencies between 10 kHz and 1 MHz. Weston43 gives solutions
of the full Kirchhoff dispersion relation for "narrow", "wide", and
"very wide'" tubes and for the '"transition'" regions in between. The

sound attenuation in a majority of practical duct acoustics problems is

govarned by the "wide tube" formula (given first by Kirchhoff)

ag, = [1+ (y-l)//l?{l(aco)‘l(w/z)l/z . (4.1)
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The restrictions on Eq. (4.1) are given by Blackstock39 in terms of the

boundary layer thickness 5=(2v/w)1/2,

w_ wa £
- § << . % . (4.2)
(o] o

The meaning of the inequality is that the radius of the tube must be large

enough that the boundary layer thickness is a small fraction of the tube

radius but the boundary layer absorption is much larger than mainstream
absorption. For the present problem a = 2,54 cm and v = 1.5 x 10_5 mz/sec; !A

the "wide tube" formula is thus valid for frequencies f such that ‘

7.6 x 1072 Hz << f << 144 kHz . 4.3)

The frequencies of interest lie between 10 kHz and 1 MHz, Evidently, the
"wide tube" formula is not applicable here.

Our particular problem is best served by Weston's result for
attenuation in the "transition" region between the 'wide tube" and the

"very wide tube',

+
@ = Oye Fog +oag ’ (4.4)

where

N

<
E

2
a;L = (1+ ﬂ) (4.5)
/F; 2c

The term a;L arises because the fluid is bounded, but it is not clear how

o w

a;L is associated with the boundary layer. Actually, Weston's result is

valid for a nonrelaxing thermoviscous fluid (i.e., g is the mainstream

thermoviscous absorption only). We assume that relaxation absorption does
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not depend on the presence of a boundary and, hence, that it may be added

to the classical thermoviscous absorption to yield the total mainstream

absorption QMS' The three terms %> Opps and u;L are evaluated for three §
= frequencies in Table IV.l. The terms a1 and u;L are computed from

Eqs. (4.1) and (4.5), respectively, and the values of ayg are obtained

from Program ABSORP (see also Fig. B.1, Appendix B). The atmospheric con-

ditions are typical conditions for our laboratory: T=25°C, RH=48%, and .

P, = 1.0 atm. For the lowest frequencies g, is the largest of the three

terms, and between 100 kHz and 1 MHz o

+
BL

MS is the most significant term.

' The extra absorption a,. is significant only in the higher decade. :

! TABLE IV.1

CONTRIBUTIONS (Np/m) TO PLANE WAVE
ABSORPTION IN "TRANSITIONAL" TUBE

£(H2) ' *BL “;L

10% 1.45 x 1072 1.17 x 1071 8.06 x 107%
10°  4.67 x 1071 3,74 x 1071 8.06 x 1072
10° 18.9 1.17 8.06

Equation (4.4) is valid only for the propagation of plane waves
in the tube. We have not been able to extend it to explain the attenua-
tion of higher order modes propagating in the same tube., It seems plausi~

ble, however, that the boundary layer absorption terms are collectively

of the same order of magnitude as the mainstream absorption, at least for

s "’ -
B aA% p
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the first few modes. Boundary layer effects are neglected in the present
analysis. As a result the total attenuation of the pulse train is
undoubtedly underestimated.

The effects of atmospheric absorption and microphone directivity
on computed waveforms were investigated independently to give some indica-
tion of the importance of each in the measured waveforms. The direct
signal, an 1deal N wave with half-duration To = 4,0 usec, was digitized at
the rate of 4 points/usec over the interval -2.55¢<2.5. The program
NTUBE was used to compute the first four reflected pulses in the short
tube for the following three cases: (1) lossless medium, point receiver
[a(w)=0, D(en)=l]; (2) atmospheric absorption, point receiver [a(w) given
by ABSORP, D(en)=1]; (3) lossless medium, finite piston receiver
[a(w)=0, D(en) given by Eq. (3.62)]. Typical measured values were chosen
for the relative humidity RH, temperature T, and ambient pressure P,
and the receiver radius o was chosen to equal the radius of the active
area of our microphone. Waveforms computed for ¢ = 1,0 mm, RH=50%,
T=25°C, and P, = 1.0 atm are presented in Fig. 4.1. The amplitude of Gibbs'

oscillations have been reduced by means of the time-domain filter routine.

The results for case (1) were, except for the presence of some residual
Gibbs' oscillations, precisely the same as those plotted directly from the
analytical solution (see Fig. 3.5). Hence the analytical results are
repeated in the first column of Fig. 4.1.

In Fig. 4.1 one may observe that microphone directivity produces

a much more noticeable change in the waveform than does atmospheric absorp-

tion. Because later arriving reflections impinge on the microphone at

more oblique angles, the distortion due to directivity increases with n.
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Total atmospheric absorption likewise increases with n because higher
order reflected waves travel greater distances. However, for our speci~
fied conditions of humidity, temperature, microphone size, and for our
particular tube geometry, microphone directivity is more important than
absorption for the first four reflected pulses.+

B. Computer Solution For a Nonideal Input Waveform

We are now ready to present theoretical results that may be
directly compared to the measured waveforms shown in Fig. 2.5. The
"average' direct N waveform measured in the short tube (spark energy
0.04 J) was digitized at a rate of 2 points/usec by the digital oscillo~
scope. Waveforms for the first four reflected pulses were computed by
means of Program NTUBE. The effects of atmospheric absorption and micro-
phone directivity were included in the computations. The geometric and
atmospheric parameters were assigned their measured values: RH=48Z,
T=25°C, P, = 1.0 atm, x = 0.074 my, a = 0,0254 m, and 0 = 1.0 mm. Computed
waveforms are shown along with corresponding measured waveforms in
Fig. 4.2 (the measured waveforms are from Fig. 2.5). The basic shapes of
the two sets of waveforms are similar: corresponding peaks and zero cross-
ings are located at nearly the same points in time. In general, however,
the peak amplitudes of the measured pulses are less than those of their
computed counterparts. It is surmised that the discrepancy has three

possible causes: (1) our neglect of possibly significant boundary layer

+This result is not surprising when one realizes that for a large part of
our frequency range, a 1 mm radius piston is not an omnidirectional
receiver. For example, the 3 dB beamwidth is 62° at 100 kHz and 5° at
1 MHz, and in the short tube the angles 0j.4 are 34°, 54°, 64°, and 70°,
respectively.
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losses, (2) apparatus misalignment, which tends to defocus the waves,

(3) nonlinear propagation distortion, which causes excess attenuation of
the waveforms (over and above geometric spreading and atmospheric absorp-
tion).T The first possible cause has been explored already. We were
unable to come up with a quantitative estimate of the error introduced

by neglecting boundary layer absorption. The latter two possibilities
are discussed in the present and subsequent chapters.

Let us for the moment argue that the difference in amplitude
between measured and computed waveforms is primarily due to inaccurate
placement of the microphone. We have observed experimentally that moving
the microphone off axis by as little as 0.25 mm can grossly affect the
measurements, Our argument is given further support by the fact that the
best agreement between measurements and theory is found for the case n=1,
The first reflected wave is reflected from the tube wall only once and
focused only once (at the microphone). It is much easier to accurately
align a simple source-mirror-receiver system than to align a system in
which the wave undergoes several reflections. The special short tube
alignment procedure described in Chapter II was designed to minimize
misalignment error, but apparently its use met only limited success.

It has been found that experimental error may also be introduced
by imperfections in the interior surface of the tube. The misfit at the
tube/microphone junction was varied, and a positive correlation was

noticed between increasing misfit and waveform degradation. When care was

1\In Chapter II it was determined from experimental data that finite

amplitude effects are negligible for a spark energy of 0.04 J. This
conclusion was based on the fact that wave shapes were the same for
spark energies of 0.04 J and lower. The dependence of pulse amplitude
on spark energy has not been investigated.

I 1 N ter 4 -




ad ),

o SRR

-

84
taken to ensure the smoothest surface possible, the misfit was less than
0.1 mm; still, its effect may be manifested as aberrations of the focused
waves.

C. Amplitude Envelope

We can gain some insight into the long-time pressure behavior
by considering the amplitude envelope of the pulse train measured in the
long tube. By "amplitude envelope" we mean a curve connecting the points
on a plot of peak-to-peak (p-p) pressure amplitudes. Because alternate
pulses differ in phase by 180°, their shapes are similar but inverted.
Either of the envelopes constructed from the odd or even numbered pulses
gives an excellent indication of the long time pulse amplitude behavior,
without introducing undesired phase information. The two envelopes are
displaced from, but are essentially parallel to, each other.

Measured and computed p-p amplitudes are plotted versus odd
values of n in Fig. 4.3, The measured values were taken from a pulse
train similar to the one pictured in Fig. 1.2(a). The solid curve was
computed by repeated application of NTUBE with x = 0.762 m (long tube).
The spark energy for this run was 0.16 J, and the atmospheric conditions
were the sar as those noted in Section B. The direct N wave had a half-
duration of 5 usec and a peak pressure equal to 1.3 mbar.

The overall amplitude of the computed envelope is considerably
larger than the amplitude of the measured envelope; however, the percent
difference between the computed and measured data sets is not constant with
respect to n. Variation between the two data sets may be shown more
clearly if the computed curve is multiplied by a constant K<l. The value

of K that yields the best fit of the computed curve to the measured data
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points (n=1 to 35, odd) is 0.587. The best-fit curve 1is given by the product

of K and the computed curve, and is denoted in the figure by the dashed

cre

i line. Comparison of the best-fit curve and the measured data reveals
that the measured amplitude falls off with n more rapidly than does the
computed amplitude.

In the previous section it was asserted that disagreement
between measured and computed amplitudes is due, at least in part, to mis-
alignment of the experimental apparatus. We are now in a position to
estimate the microphone offset distance r from measurements of the ampli-
‘ tude envelope. Our estimate is based on the frequency domain pressure
solution, Eq. (3.34), evaluated at the peak frequency wp of the direct
wave spectrum. Now the largest peak in the spectrum |Z§[N(t)]l of an
ideal N wave is located at the frequency wp=2.1/To (see Appendix B, Sec~
tion 1). To a rough approximation, the same is true for a real N wave.
Let us assume that the amplitude of each reflected pulse is proportional
to the amplitude of its largest spectral component.+ Substituting the
measured values of the p-p pressure into the LHS of Eq. (3.47c) and let-
ué ting m-wp and R=x=Ro in the RHS, one may find the radial receiver displace-
ment r=r(n) that could cause the observed reduction in measured amplitude.

Because the microphone directivity factor D(en) is valid

1
‘1 only for a transducer centered on the axis, it must be assumed that the

)

3

{

; +This assumption is not as rash as it may at first seem. The spectrum of
an ideal N wave falls off at 6 dB/octave on either side of w,. The

reflected wave spectra are similar in shape to the spectrum of the direct

N wave. For D(en,w)zl, /7<w<7w , and a(wp)Rp<<l, the amplitude of p,

is nearly independent of requency. The pugse amplitude is then roughly

proportional to the spectrum amplitude at wp.
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receiver is omnidirectional, i.e., that D(en)=1. The general effect of
the finite size of a microphone (located at any radial position) on a
received waveform is one of attenuation. Since the measurements were
performed with a microphone of finite size, the measured amplitudes are
less than the actual ones; the estimated values of r(n) are therefore too
large. Furthermore, sinen is nearly constant for large n (the rate at
which sinen aporoaches 1 depends on the tube geometry), and it follows
that n(en) tends to a constant as n+~, Hence, for n large enough that
sin9n=l, we should expect to find that r(n) approaches a constant value r,
which is somewhat greater than the actual displacement of the microphone.
Estimated values of r(n) (n odd) have been calculated from the
measured p-p amplitudes and Eq. (3.47c) for an ideal N wave whose half-
duration is 5 usec and whose spectral peak therefore falls at
fp = wp/2n = 67 kHz. Atmospheric absorption at 67 kHz is 0.306 Np/m.
The results are presented in Fig. 4.4, For n>15 (Grr14"°), the constancy
of r(n) is quite remarkable, in light of the numerous approximations made
in the above analysis and the considerable possibility for experimental
error. From the curve it is estimated that an upper bound of the system
misalignment is given by r = 1.5 mm.

D. Of f-Axis Measurcments

An investigation of off-axis signals yields results which both
support our ray theory solution and provide physical insight into the
problem of misalignment. On-axis and off-axis waveforms measured in the

short tube are pictured in Fig. 4.5. The axial distance (x = 0.074 m)

and spark energy (0.06 J) were the same in each case.
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The figure shows how incoming and outgoing waves are combined at

a focus. It also permits identification of the phase of each component
wave. The off-axis waveform is described by Eq. (3.45): the incoming
and outgoing signals for n=1 are shifted 0° and 90°, respectively, with
respect to the direct wave. Those for n=2 are shifted by 90° and 180°,
and 80 on, for each n. The shapes are in qualitative agreement with what
one would expect from the shapes shown in Fig. 3.2.
E. Summary

In this chepter waveforms computed from the theoretical results
have been compared with measured waveforms. The measured wave shapes have
been accurately predicted, but the amplitudes have been overegstimated by
approximately 40%. Three possible explanations for the error have been
suggested: mneglect of boundary layer effects; misalignment of the
experimental apparatus, which results in the measurement of incompletely
focused waves; and nonlinear propagation distortion, which causes the
sound wave to suffer excess attenuation. Boundary layer absorption has
been discueecd in some detail, and a quantitative estimate of the degree

of misalignment has been given., Nonlinear distortion is discussed in the

following chapter.
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CHAPTER V

PROPAGATION OF FINITE AMPLITUDE WAVES IN THE TUBE

In the preceding chapters an investigation of the propagation
of small-signal waves in a cylindrical tube was described. The spark
energy was kept below 0.2 J. In this chapter results are presented which
suggest that finite amplitude effects may be important for higher spark
energies. The shapes of the indiv;dual waveforms in the pulse train
change dramatically as the spark energy is increased from 0.04 J to 2.3 J.

The experilmental results are investigated by means of a numerical
ray tracing algorithm., The algorithm is synthesized from basic tenets of
nonlinear acoustics and from results described in the previous chapters
for propagation of small-signal waves in the tube. Because of time con-
straints the algorithm has not yet been implemented as a computer program;
It is regrettable that no quantitative results can be given. However,
qualitative results indicate that a solution of this type may adequately
account for the observed change in pulse shape.

A, Measurements

Waveforms were recorded on the axis of the long tube for seven
spark energles between 0.04 J and 2.28 J. The spark energy was increased
by adjusting the length of the electrode gap; the longest gap, which
corresponded to the highest energy, was approximately 2 mm. The experi-
mental apparatus was unchanged from that used to make the low amplitude
measurements. It was not possible to measure finite amplitude waves in

the short tube because the microphone was overloaded by the extremely

high pressures encountered close to the source.
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Measured waveforms are presented in Fig. 5.1. Two preliminary
observations are in order. First, the direct N wave, identified by the
letter "D" in oscillograms (a)-(d), is in all cases at least partially
obscured by the first reflected wave. As the spark energy is increased,
the time lag between the direct and first reflected arrivals is diminished.
The direct wave is not at all visible in oscillograms (e)-(g), which cor-
respond to the highest spark energies. The amplitude of the first
reflected wave is evidently large enough over at least part of its travel
path to form a shock front capable of overtaking the direct wave. 1In a
similar manner the second reflected pulse, which 1s larger in amplitude
than the direct wave and the first reflected wave, overtakes them both
when the source energy is large enough {e.g., 2.28 J, (g)]. Second, pulse
duration increases with increasing source amplitude. This is to be ex~
pected because the length of the N wave, which forms the basis for each
train of pulses, increases with spark energy (see Wright, Ref. 20).

The main conclusion to be drawn from Fig. 5.1 is that the
apparent phase shift is amplitude dependent. As the source amplitude is
increased, the shape of each pulse changes; yet for large n there appears
to be a constant 90° phase shift between pulses. The shape is stable for
spark energies less than about 0.04 J (as noted in Chapter II), but at
higher energies the phase advances so that the nth high amplitude pulse
has the same basic shape as the (n-1)th low amplitude pulse. Consider,
for instance, pulse No. 8. As the spark energy is increased, the waveform
gradually departs from its initial shape (a8). In (d) the shape more
nearly resembles (a7). Moreover, the departure from shape (a8) continues

to increase with spark energy so that in (g) pulse No. B resembles (ab),
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a U-shaped wave. Similar progressions can easily be seen for all pulses
arriving more than 100 usec after the direct wave (unfortunately, at
earlier times, overlapping of the pulses obscures the evidence). It is
postulated that the reduction of phase shift is induced by nonlinear prop-
agation distortion. In the following sections a numerical model is devel-
oped with which to test this hypothesis.

B. A General Propagation Algorithm

As a wave front propagates down the tube, it alternately
converges and diverges in the radial direction. The wave amplitude there-
fore alternately increases and decreases along a ray. Because nonlinear
propagation distortion increases with amplitude, the rate of distortion
increases with distance for a converging wave and likewise decreases for a
diverging wave. Approximate analytical solutions of the nonlinear wave
equation are known for spherical and cylindrical waves, but none are
applicable to the present problem. Numerical solutions have proven useful
under circumstances similar to ours. In this section we discuss a general
form of an algorithm developed by Anderson30 to model free propagation of
finite amplitude spherical waves in a lossy medium. It is shown that one
may apply Anderson's algorithm to finite amplitude waves with arbitrary
space and time dependence, given the geometric spreading factor for infin-

itesimal waves and the time dependence at some reference position.

Let us first define what is meant by "nonlinear propagation
distortion,” a term that has been used rather loosely up to this point.
Simply put, nonlinear propagation distortion of a wave is manifested as a

change in wave shape that arises because different points on a wave

(called wavelets) travel with different velocities. A wavelet associated
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with a particle velocity u>0 has a propagation speed greater than <, (the
small-signal propagation speed), while a wavelet with particle velocity
u<0 travels at a speed less than c e In a lossless gas, the total velocity

of a wavelet is

ow

l

c_ + Bu ’ (5.1)
o]
u = const

where B=(y+1)/2. When the amplitude of the wave is infinitesimal, i.e., J
"peak s a8ll wavelets travel with approximately the same speed, and the f
wave does not distort significantly. However, when the wave is of finite
amplitude (upeak>0), the difference in speed between wavelets causes the
wave to distort as it travels. The distortion is cumulative with distance.
Now consider the propagation of a finite amplitude wave from
v ' position R0 to position Rq. Each wavelet may be identified by the time ¢

at which it leaves Ro; at this time the associated particle velocity is

‘o . 45
uo(ﬁ). The wavelet arrives at position Rq at time

Rq
dt
c—¢>+[ iR dR . (5.2)
' R
)
S Combining Eqs. (5.1) and (5.2), one obtains
by
- R,
% t=0+ —F= . (5.3) «
3 <, u
..1' o '
| Let us consider only waves for which u<<c0. The denominator of Eq. (5.3) i
4 R
1 ;
i may then be expanded in a power series to yield an approximate expression
; for the integrand. 1If terms of second order and higher in u are neg- \ i
. L
.. lected, the expression for t becomes
£
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where t'=t-(Rq—Ro)/c0 is the retarded time. Explicit solutions of
Eq. (5.5) may be readily obtained for plane (u=uo), cylindrical (u«uoR-l/ZL 4
and spherical (u«uoR_l) waves,

The use of an iterative algorithm permits evaluation of Eq. (5.5)

for a function ': whose amplitude varies arbitrarily with distance, say,

u=uof(r). One can also include the effects of absorption in such an

algorithm. Absorption and geometric spreading are computed in the fre-
quency domain over a small step AR, and distortion is computed in the time
= domain over the same step. First, the particle velocity of wavelet ¢ is
specified at initial position Ro by u0(¢). Then tl.e FFT is used to obtain

Uo(w), the Fourier transform of uo(¢). Absorption and geometric spreading

! are applied over AR in order to find the particle velocity Ul(m) at

s R =R _+AR,

“ 1
£(R,)
R _ 1 ~a (w)AR
4 U, (W) FR) U, (w)
.'1
f Finally, the inverse FFT is computed, and the arrival time ti at point Rl
- 3

is computed by means of Eq. (5.5). The step size AR is chosen small enough
that u(¢) may be considered constant over the entire step; for the ficst

step, that constant is ul(¢). Thus, we have
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- uudy

r ' = - 2
, t] = ¢ - Bu (#)aR/c’

For successive distances Rm=Ro+mAR the attenuation and time shift

are computed from the following:

~a (w)mAR

um(¢) = uo(¢)f(Rm)/f(Ro) e (5.6a)

\ 2
t = £, - Bu (9)8R/c. . (5.6b)

Since AR has been chosen small enough that u  may be considered constant,
and since um<<co, it may be assumed that the linear plane wave impedance

relation p=p_c u is valid. Hence, Eq. (5.6b) may be rewritten in the
form+

Bp0(¢)f(Rm)AR

t! o=t -
m m-1 3 . (5.7)
poco f(Ro)

Equations (5.6) and (5.7) describe the distortion suffered by a finite
amplitude wave as 1t propagates in a lossy medium. Absorption and geo-
metric spreading are computed in the frequency domain over the interval

(R Rm), and distortion is computed in the time domain over the same

m-1’

step. Then m is increased by one, and the absorption-distortion pair is

repeated. The iteration is repeated until m=q, i.e., until the wave )
1

reaches the receiver.
;
t 4
+Here Po(®) is the acoustic pressure at Ro and is not to be confused with 1

the ambient pressure.
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Equatilons (5.6) and (5.7) are valid as long as the waveform
remains single valued. Anderson asserts that atmospheric absorption is
sufficiently strong to keep the wave from becoming multivalued, and that
in practice we need only choose a step size small enough that distortion
does not cause the wave to become multivalued.

C. An Algorithm for the Propagation of Axisymmetric Waves in_a Tube

Up to this point a general method has been described by which to
numerically model the propagation of finite amplitude waves in a lossy
medium. The algorithm is now specialized to the problem at hand. The
presence of the tube complicates matters in three respects. (1) A wave
propagating along one of the eigenrays (but not the direct ray) alternately
converges and diverges. In order to use the propagation algorithm we must
divide the travel path into sections on which the wave amplitude varies
monotonically. (2) As a wave passes through a focus, its shape changes
abruptly. It is assumed that the phase shift may be applied indenendently
from the distortion and absorption. (3) It must also be assumed that the
incoming and outgoing signals propagate independently of each other, i.e.,
that there is no standing wave nonlinear interaction. This algorithm may
therefore be better adapted for pulses, for which the overlap of incoming
and outgoing waves is quite limited, than for cw waves.

Between its emission by the source and its reception by the
microphone, a wave is reflected from the tube wall n times and focused on
the axis n times (the final focus occurs at the microphone). For purposes
of computation we subdivide the propagation path into segments bounded by

the points of reflection. On each segment the wave converges, focuses,

and diverges. For the ith segment the focus is chosen as the origin of
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the coordinate system. The wave is computer propagated between the ith

and (i+l)th reflection points, through the ith focus; then the coordinate
origin is shifted to the (i+l)th focus and the process is repeated. The
coordinate system is pictured in Fig. 5.2 for i=1 and n=2. The ith focus

0,, is located a distance Xy from the source, and the points at which

i’
the wave reflects from the tube wall are labeled Ai’ where 1 = 1, 2,
..., n. The wave converges as it travels along the ray segment K;Ei, suf-
fers a 90° phase shift at 01, and then diverges along _;Ki+1° At any point
on KIK1+1 the wave appears to have originated at the ith ring image source
Si’ whose radius 1is ri and whose distance from the focus is Ri=(xi~+ r? l/%
Since ri=(1/n)rn and xi=(i/n)xn, the triangles OSiOi and Osnon are similar
triangles, and ei=en.

The geometric spreading function fi(R) for propagation along the
ith segment of the nth eigenray may be derived in a readily usable form
from Eq. (3.44), which in terms of our new coordinate system may be

written

1/2

a-1 -ijn sinen
P = s I8
n(r,x,w) POROF(w) j e = )

(5.9)
ejkr sing e-jkr sind ‘l
+ 3
) o 1/2 9
(R - r sinB )
n n

AT SO NPT~ VPP s SRR SR I

(Rn +r sinen)l/%J

Recall that this equation describes the propagation of a small-signal wave
in a lossy medium from the nth ring image source Sn to the receiver, which
is situated at X By replacing n with i we obtain an expression which

describes propagation between the ith ring source and the ith focus along

the nth eigenray,
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1
J/RT , 1/2’” i\1/ (5-10)
(Ri—R ) (R1+R ) ﬂ

3 i [ = i-
_ P (R',w) = PR F) 377 e

where R' = r sinen. The geometric spreading factor for propagation along

the nth eigenray is found by inspection from Eq. (5.10),

sin ©

i n
f (R') = —~ e (incoming waves 5.11
n R (R,R) 8 ) (5.11a)

E sin 0
n

i
f"(R'") = ————— (outgoing waves) . 5.11b)
n /RI(Ri+R') 8 g (

By computing the inverse Fourier transform of Eq. (5.10), it can
be shown that pi(R',t) is the sum of an incoming and outgoing wave. The
former corresponds to a convergent front, which travels from Ai to Oi' and
the latter corresponds to the divergent front that subsequently propagates

- from O, to A

{ 141 The factor j in the second term of Eq. (5.10) indicates

that the phase of the outgoing wave lags that of the incoming wave by 90°.
The cumulative phase factor ji-l exp(~iji) keeps a running total of the
distance traveled by the wave and the number of times it has crossed the
axis.

The special case i=0 corresponds to propagation along the first
segment of the ray path, which lies between the real source O and the first
reflection point Al; on this segment the wave front spreads spherically.
The segment length OAl is equal to Rn/2n. The input waveform for the
propagation algorithm is measured on the axis at a distance Rn/Zn from the

source. This reference waveform is '"launched" from the point A, to propa-

1

gate as a convergent wave along A1°1'

yv u'

* .
i
]
[




162

The waveform is computed at positions R' on the nth eigenray
according to the following two procedures. (1) For each R' absorption and
geometric spreading are computed in the frequency domain, and distortion
is computed in the time domain. The combination is referred to as a prop-
agation step. (2) Each time the wave crosses the axis, its phase is
shifted by 90°. A flow chart for the procedure is presented in Fig. 5.3.

A more elaborate description of the algorithm is now presented.

The reader who is not interested in details may proceed to Se¢ ion C with-
out loss of continuity. To begin, the waveform is specified on a sphere
' of radius Ro. As we have already noted, it is convenient to specify the
initial waveform at the tube wall (point Al); then R0=Rn/2n. In general
the waveform at any reflection point Ai is given by the end result from

propagation over the (i-1)th segment.

- -

Consider then the general case in which a wave leaves Ai on
Aioi‘ The wave is propagated inward along the ray in small steps

AR=AT sinen. The position of the wave in relation to the ith focus is

identified by the step index m, and the distance R'(m) from the ith focus
is given by
gf R'(m) = Ro ~ mAR (incoming waves) . (5.12a)
; j R'(m) = mAR (outgoing waves) , (5.12b)
r.?
Y
)
L] wherem =1, 2, ..., M, and MAR=Rn/2n.
.

- Incremental spreading, absorption, and distortion are computed at 4
,: each position R'(m). Linear spreading and absorption are computed in the
.; frequency domain from the formula
4

4

R 4 5

-

$ .
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frix[R' (m)] -jo(w)AR
PR’ (m),u] = P[R"(m-1),0] ———— e @ , (5.13)
fn[R'(m-l)]

where R'(0)=Ro. Function ABSORP is used to determine the absorption
coefficient a at each component frequency. Distortion is computed in the

time domain according to the equation

(@ -t (1) - ERRD, L @DIR, (5.14)
Po%
where t'(0)=0.

The FFT routine used between the absorption and distortion steps
requires that the time waveform be specified in equal time increments.
However, the distorted waveform that results from the use of Eq. (5.14)
does not satisfy this requirement. Subroutine RESAMPLE provides an equal
time increment sample of the distorted waveform., A listing of RESAMPLE is
given in Appendix B of the work by Anderson.30

Propagation is halted at a point R; close to the focus. A 90°
phase shift is then applied to P(R;,w). Propagation is resumed on the
other side of the focus at R=R:=R;; the new reference is P(R:,m). It is
assumed that the principal effect in going from R; to R: is the phase
shift due to focusing, i.e., nonlinear distortion is assumed small over

this small distance. For the divergent front, the spreading factor fi is

specified by Eq. (5.11b) and the retarded time by
t' =t - (R,-R 4R )/c
i o m o

Propagation is continued until the wave reaches the tube wall at point

Ai+1' At this point the index i is increased by 1, the origin is moved

.-y hatue Sadaliad | Wby St instindiubiERe SRRt ST S
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from 0i to 01+1, and the propagation/phase shift/propagation sequence is
repeated. As the wave front progresses down the tube, 1 increases sequen-
tially from 1 to n. Propagation is complete when the signal arrives at the
nth focus. Because the receiver is located at the nth focus, only a 45°
phase shift is applied there. Finally, the waveform is plotted as a func-
tion of the retarded time t'=t—(Rn-Ro)/c.

The radius R; at which the propagation sequence is temporarily
halted has not yet been determined. We suggest that it be optimized so as
to provide the best possible agreement between measured and computed
results. Since the linear solution [Eq. (5.10)] upon which this algorithm
is based is valid only for kR'>>1, it seems reasonable that, as a first
try, R; be chosen as small as possible but still large enough to satisfy
kR;>>l.

C. Qualitative Results

The algorithm described above has not yet been implemented.

However, using our knowledge of the three basic processes at work--absorp-
tion and spreading, distortion, and phase shift--we can sketch qualitative
results. It is assumed that the phase shift happens very quickly; the
wave shape therefore changes radically over a very short distance.
Spreading-absorption and distortion, on the other hand, are cumulative
processes: their effects increase with travel distance. Distortion tends
to steepen the leading edges of positive pressure regions and the trailing
edges of negative pressure regions. Absorption tends to smooth rapid
changes in pressure and pressure gradient. Approximate waveforms sketched

according to these three basic processes indicate that the proposed
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algorithm may help to explain the extra phase shift noted for the
waveforms observed at high spark energies.

Waveforms are sketched in Fig. 5.4 for various positions on a

2l

single eigenray. The points Ai correspond to points of reflection at the

tube wall, the points 0, to successive foci (see Fig. 5.2). It is assumed

i
in this example that n>3. The cumulative phase shift is noted directly to
the right of each waveform. The apparent phase shift, found by comparing
each of these waveforms with the results from linear theory (see Figs. 3.4,
3.5), is noted in parentheses. The sketches are quite rough, and the appar- {
ent phase shifts were detcrmined only by visual comparison with the small-
signal waveforms. Nevertheless, the results show that the time shift
‘ induced by nonlinear distortion can be interpreted as a phase snift.
The difference between the linear theory phase shift and the
‘! apparent phase shift increases as the wave propagates down the tube. Be-
cause the wave amplitude decreases with distance, finite amplitude effects
become less important at large distances from the source. In the limit
that the wave becomes a small-signal wave, the difference between the
actual and apparent phase shifts becomes constant, and any further conver-

gence or divergence is described by linear theory. The same type of

.
»
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t 20

behavior was observed in the measured waveforms.
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In summary, finite amplitude sound waves have been measured on } i
the axis of a cylindrical tube. The waveforms differ from small-signal f. :
waveforms obtained under otherwise equal conditions. We have postulated % 4
that nonlinear propagation distortion is responsible for the difference,
and have proposed a numerical model to test our hypothesis. Qualitative f i

results show that nonlinear propagation distortion alters the wave shape p
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' in accord with experimental observations. Actual implementation of this

model will be necessary to more completely determine its validity.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Experimental and theoretical means have been used to study the
propagation of a spherically diverging pressure pulse in a rigid cylin-
drical tube. Both source and receiver were located on the tube axis, and
the pulse was an N wave produced by an electric spark. Results have been
obtained for both small-signal and finite amplitude waves.

In the experiment, N waves are produced by means of an electric
spark, whose gap length was much shorter than the length of the N wave.
Small-signal waveforms were measured on axis with a baffled condenser
microphone and a digital oscilloscope. Measured waveforms indicate that
the pressure observed at the receiver is a combination of direct and
reflected waves. The shapes of the reflected waves vary periodically with
reflection number n; the period is four pulses. It is surmised that the
change in wave shape is caused by 90° phase shifts suffered as the waves
focus on the axis. The envelope of the pulse amplitudes increases and
then slowly decays. Most of the reflected waves are larger in amplitude
than the direct wave. Measurements were also made with the microphone
located off axis. The received signals were composed of pre- and post-
focus waves, whose amplitudes were much smaller than those of the on-axis
signals. Finally, the spark energy was increased, and finite amplitude
waves were measured on the tube axis, The shape of each high amplitude
pulse differed considerably from that of its corresponding low amplitude

pulse.
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Because of variation in spark amplitude and difficulty
encountered in aligning the apparatus, individual pulse amplitudes were
averaged over several spark discharges. An "average waveform", whose
amplitude was the same as the computed mean, was then captured and stored.
Use of this procedure permitted accurate measurement of each pulse in the

: series.

We have presented a theoretical analysis in which we account
for thermoviscous and relaxation absorption and the finite size of the *
microphone, but assume that the source is an ideal point source, the tube o
wall is perfectly rigid, and boundary layer absorption is negligible.

The linear, inhomogeneous wave equation for propagation in a thermoviscous
medium has been solved by means of Fourier transforms. A general solution
"has been given in the full transform domain (r,&,w). Approximate fre-
: quency domain (r,x,w) solutions valid for "high frequency" (ka sinen >> 1)
. have been derived from the general solution for on- and off-axis observa- 5 h
- tion points. The frequency domain solution shows that the signal received ;
is the sum of direct and reflected waves, and that focusing, absorption, 3
and microphoneé directivity contribute to the observed changes in wave 5 ;
shape and amplitude from one arrival to the next.
A Time waveforms of the individual reflected pulses have been

found by computing the inverse Fourier transform of the frequency domain

1 solution. On- and off-axis waveforms have been calculated analytically
*e E
‘ for a case in which the direct wave is an ideal N wave, the medium loss- 1
3 less, and the receiver an ideal point probe. Waveforms have also been
1‘
i computed digitally for less restrictive conditions. The input waveform A 3
4
> “
1 for the computer program was determined from measurements. Mainstream
H
- ¥
! i

e TR
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thermoviscous and relaxation absorption were included, and the microphone
was assumed to be a baffled piston of finite size. Computed and measured
waveforms are similar in shape, but they differ substantially in ampli-
tude. It has been postulated that the amplitude discrepancy is caused

by one or more of three possible factors: misalignment of the apparatus,
our neglect of boundary layer effects, or nonlinear propagation distor-
tion.

The effect of finite amplitude on the measured waveforms has
been investigated in some detail. Mrasured data suggested that the
accumulated phase shift of each pulse is reduced by nonlinear propagation
distortion. A numerical propagation algorithm, modeled after one develop-
ed by Anderson, has been devised to account for distortion, absorption,
and focusing of the guided wave fronts. The algorithm has not yet been
implemented. However, qualitative results sketched according to the basic
principles involved suggest that use of the algorithm should yield
improved theoretical predictions for finite amplitude waves. It is hoped
that the algorithm will be imblemented in the near future.

It is concluded from the experimental and theoretical results
that when a point pressure source is placed on the axis of a cylindrical
tube, the pressure elsewhere on the axis is equal to the sum of a direct
wave, which propagates straight down the axis, and a series of reflected
waves, which alternately bounce off the tube wall and focus on the axis.
The time waveforms of the received signals are determined in large part
by (1) the time history of the wave emitted by the source, (2) a cumula-

tive phase shift, which is increased by 90° each time a wave front crosses

the axis, (3) atmospheric absorption, (4) microphone directivity, and
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(5) for larger source levels, nonlinear propagation distortion. Off
axis the amplitudes of the received pulses are considerably reduced and
the phase factors are different from their on-axis values.

The experimental and analytical techniques described herein, in
addition to the results presented, may find application in problems
similar to this one. A few related problems were mentioned in Chapter I.
Further application of our results for the focusing of guided waves may be
fruitful in areas such as array development and ultrasonic imaging. The
digital implementation of atmospheric absorption may easily be adapted
for use in architectural and environmental acoustics problems. Finally,
this work should provide a foundation on which to begin study of the

nonlinear interaction of multiple sound waves in a tube.
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APPENDIX A

90° PHASE SHIFT OF A BROADBAND SIGNAL

The phase properties of a broadband signal are most easily
addressed in the frequency domain. It has been shown in a frequency
domain analysis that two-~dimensional focusing results in a 90° phase
shift, or multiplication by j(= /~1). Let us assume that the pre-focus
wave is a real function of time. In this appendix it is shown that the
post-focus output is real if and only if the positive frequency components
are shifted +90° and the negative components -90°, or vice versa.

First, let us establish some symmetry properties of Fourier

transforms. The Fourier transform of f(t) is defined by

F(w) = f £(t) e YWt gt .

If f and t are real, the complex conjugate of the transform is
® jut (A.1)
F*(w) = f(t) e dt = F(~-w) . .

Hence, if f(t) is real, F(w) is Hermitian and therefore satisfies the

following:
|F(-)| = [F*(w)|
= |F(w)]
arg F(-w) = arg F*(w)
= -arg F(w) .
114
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That is, the amplitude of the transform is even and the phase is odd. It

can be shown similarly that if f(t) is pure imaginary, then F(w) 18 skew

Hermitian, i.e., F(-m)=—F*(m).A'1

& Now let us postulate that fl(t) is real and that the transfer
function of a "black box" which shifts all spectral components by 90° is |
jG(w), where G(w) is to be determined. If the transform of the input is .

Fl(w), the transform of the output is given by

Fz(m) = jFl(w)G(u) . (A.2)

i
|
§
1
In order for the output fz(t) to be real, Fz(w) must have Hermitian f

symmetry. Substituting Eq. (A.2) into Eq. (A.l), one obtains

Fl(-w)G(-m) = -Fl*(w)G*(w) .

Since fl(t) is real, Fl(m) is Hermitian, and we find that G satisfies the
relation

G(-w) = -G*(w)

In other words, G is skew Hermitian.

The function G must be real to maintain the 90° phase difference

between Fl and FZ' It follows that G(~w)=-G(w). In addition, our ''black

box" has no effect on the magnitude of F, (i.e., lF2|=|Fl|); so |G|=1.

It is concluded that

€
]
o

G(w) = sgn(w) = o

). .

} Thus, if a broadband signal is to be shifted by 90°, its
;’é Fourier transform must be multiplied by j sgn(w).
rh 1
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APPENDIX B

ATMOSPHERIC ABSORPTION OF A SMALL-SIGNAL N WAVE

In this appendix analytical and digital methods are described
for calculating the shape of a small-signal N wave as 1t propagates
through homogeneous air. Results from the theoretical models are compared
with measured N waveforms. The digital techniques employed herein are
used in Chapter III to account for atmospheric absorption in the cylindri-
cal tube.

The coefficient a for calculation of the absorption of sound
in air has been standardized in American National Standards Institute

B.1

(ANSI) document S1.26-1978. The frequency dependence is given in

simplified form by

a = aw2 + me/[1+(mO/w)2]+ dwN/[l+(wN/m)2] Np/m , (B.1)

where w (=2nf) is the angular frequency, W and wy are the angular
vibrational relaxation frequencies of oxygen and nitrogen, respectively,
and a, b, and d depend on the ambient temperature T and pressure Py The

valnes of w, and wy depend on T, P> and the relative humidity RH.

0
Procedures for calculating Wos Wys @ b, and d are given in the ANSI
standard. The absorption coefficient calculated by this method is

accurate to within :10%, subject to the following restrictions:

in

50 f/po < 106 Hz/atm |, Py < 2 atm 3

0 £ T £ 40°C H

IA

10 < RH = 100%
116
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An analytical solution is found for the propagation of an ideal
N wave through air. The solution is based on an expamnsion of o to first

order in mz; the expansion is valid at frequencies such that w>>w The

0
low frequency accuracy of the solution is improved by approximating
with a two-term polynomial fit; the coefficients are determined from a
quadratic fit of the ANSI absorption.

A computer model based on the ANSI absorption is developed
to calculate the effects of atmospheric absorption on arbitrary broadband
pressure signals.

Finally, the results of a free-medium propagation experiment
are presented. Measured waveforms are in favorable agreement with those

obtained from the analytical and digital models.

1. Quadratic Approximation for o

Each of the three terms in the expression for a represents the
effect of a different absorption mechanism. The first term on the right-
hand side of Eq. {B.1) is equal to the sum of the so-called classical
thermoviscous absorption @y (which includes Stokes' assumption about the
ratio of the two viscosity coefficients) and the rotational relaxation

absorption a . The classical absorption is defined byB"

vl 4,321 wo/m
%17 3|3 Pr P ’
2co

where v is the kinematic viscosity, y is the ratio of specific heats, <,
is the sound speed, and Pr is the Prandtl number. The rotational relaxa-

B.3
tion absorption at room temperature has been measured by Greenspan.

Bass and KeetonB'4 give a simplified result for f << 100 MHz,
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a, = 0.32 a3 .
The second and third terms in Eq. (B.l) owe their presence to

the vibrational relaxation of oxygen and nitrogen, respectively. When

T, P, and RH are within the limits set by the standard, 0y is between one

and two orders of magnitude greater than Wy If the frequency range of

interest is limited to w>>wq, the third term may be neglected, and the

second may be expanded in powers of (wo/w)2 to yield

b [1+(w0/w)2] - bwo[l-<w0/w)2 + ] = buy

The total atmospheric absorption may therefore be approximated by the

-1

quadratic

a = amz + bwo (w>>w0) .

The parameters a and b and the relaxation frequencies Wy and Wy
have been computed for the actual atmospheric conditions according to
ANSI S1.26. Under typical laboratory conditions the oxygen relaxation
frequency fo=mo/2w lies between 10 kHz and 75 kHz. More specifically,

when T=25°C, Py = 1 atm, and RH=487%, we find that

0 54.3 kHz .

4,71 x 10743 Np - sec2/m R

£

a

3.64 x 07t Np/m .

bwo

The approximate absorption a and the ANSI absorption a are plotted in
Fig. B.l. The a curve is an unacceptably poor approximation at frequen-
cies below about 50 kHz: the error is 82% at 50 kHz and 2500% at 10 kHz.

Clearly, strict adherence to the condition w>>wo is a severe restriction
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on the usefulness of the o curve. The frequency content of a small-
signal N wave is now examined to determine whether it conforms to this

restriction.
The Fourier spectrum (magnitude of the Fourier transform) of
an ideal N wave is obtained from Eq. (3.56),

| FIN(E) )| = I(Z/m)jl(wTo)l (units of time) .

PSS VIS "

where jl(z) is the spherical Bessel function of the first kind of order 1

and To is the N wave half-duration. The first (and largest) peak in the
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spectrum is located at the point wp=2nfp=2.1/To. Although the spectrum
has nonzero amplitude down to zero frequency, a reasonable low end cutoff
may be imposed at a frequency where the spectrum level is 10 dB below the

peak level., In the case of an ideal N wave, the cutoff frequency f

-10d4B
is approximately equal to fp/7. Now the amplitude and duration of spark-
produced N waves cannot be varied independently.B'5 In order to qualify

as a "small signal” at typical short laboratory distances (peak pressure

> N/mz), an N wave must have a half-duration less

level < 125 dB re 2 x 10~
than about 5 usec. Then, if T0 £ 5 usec, the low end cutoff fre-

quency f is approximately equal to 10 kHz.

-10dB
One may similarly show that the upper cutoff frequency £

~10dB
of the envelope of an ideal N wave spectrum falls approximately at 7fp.
The high frequency range of the approximate absorption is limited by the
restriction of the ANSI absorption to frequencies less than 1 MHz.
Furthermore, the bandwidth of the experimental apparatus is 1 MHz, If
the N wave spectrum is limited to f < f-IOdB = 1 MHz, the sable
range of N wave duration is restricted to T0 2 2.5 usec. To summarize,
the infinite bandwidth of a low amplitude, ideal N wave may be reduced
to an important band of frequencies between 10 kHz and 1 MHz; yet the
approximate absorption is considerably in error at frequencies below
50 kHz.
In an effort to achieve better overall agreement between the
standard and approximate absorption curves, a linear, least squares
regression was performed on the ANSI absorption to determine a best-fit

approximation of the form a*=Aw2+B. The regression was performed over

the interval 10 kHz to 1 MHz with a sampling density of 25 points per

N Ay
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decade. The following atmospheric conditions were specified: T=25°C,

P, = 1 atm, and RH=48%. TFor these conditions the "improved” coefficients

A and B were determined to be

13

A=4,79 x 10~ Np - seczlm .

1.94 x 1071 Np/m .

B
The correlation coefficient is 0.9996. The quadratic fit is within +0.18,
-0.14 Np/m of the ANSI absorption at 48% relative humidity between 10 kHz
and 1.0 MHz. Relative error is usually considered a more valuable statis-
tic than absolute error. The relative error between a* and o is large at
low frequencies. Nevertheless, the attenuation is so small at low fre-
quencies that the effects of the error on the propagation of a small-signal
N wave over short distances are negligible.

The best-fit absorption o* is presented in Fig. B.l along with
the ANSI absorption o and the first approximation o. The quadratic fit
o* represents a significant improvement over the first approximation o,
especially with regard to N wave propagation. The error in a is large at
low frequencies (3.1 Np/m at 10 kHz) and vanishingly small at high fre-
quencies (6 x lO—3 Np/m at 1 MHz), while the error in o* is balanced more
evenly throughout the frequency domain.

The fact that the ANSI and best-fit curves intersect is of
additional merit. The second approximation o* is more accurate than the
first approximation a in a band of frequencies centered at the inter-
section frequency, 58.4 kHz. For example, in the octave band centered at
58.4 kHz (41.3 - 82.5 kHz), the error in a* is within -0.057, +0.061 Np/m.

Now the maximum amplitude in the spectrum of an ideal N wave whose half-~
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duration is 5 usec falls at 67 kHz. At this frequency the error in a* is
0.024 Np/m, and the error in a is 0.14 Np/m. It is therefore expected
that the use of a* instead of a will yield more accurate results in the
analytical solution, which is derived in the next section.

2. Propagation of a Small-Signal N Wave; Approximate Absorption

The approximate absorption coefficient is now applied to a
diverging, spherical N wave. An integral solution is obtained which is
valid for a large class of signals f(t) whose Fourier spectra are con-
centrated in, but not necessarily confined to, the frequency band 10 kHz
to 1 MHz. The limits of integration are -», », It is assumed that the
spectral components of f below 10 kHz and above 1 MHz contribute little to
the shape of f(t); error in their attenuation will therefore make little
difference to the shape of the propagated waveform.

Consider an outgoing spherical wave f(t) whose Fourier transform
F(») has the aforementioned characteristics. For propagation through air,
dispersion is negligible and the absorption may be approximated by a¥*.

The signal may be represented at position R by its Fourier transform

-ik(R-R )
F(w,R—Ro) = (RO/R) F(w,Ro) e s

where F(w,RO) is the Fourier transform of the signal at the source posi-
tion Ro and the propagation constant k is defined by

= - jo*
k w/co ja .

Since

-jk(R-R ) _
-1 [e °] - {ImA(R-RO)-Jl 1/2 exp[-B(R-Ro) - t'z/loA(R—Ro)] ,
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where t'=t—(R—Ro)/co, the time function f(t',R—RO) corresponding to
F(m,R—RO) is given by the following convolution integral:

~B(R-R )
f(t',R-Ro) = (RO/R)[lnrA(R--Ro)]--l/2 e °

o —T2/4A(R—Ro)
X f f(t'—T,Ro) e dt . (B.2)

It is possible to evaluate this integral exactly for a variety of simple

functions f, including periodic functions, Gaussian functions, and a few

transients of finite duration. One such transient is the ideal N wave.
Consider the ideal N function, which, in terms of the

dimensionless retarded time ¢=t'/To, is given by [see Eq. (3.57)]
N(¢) = -¢ rect[d/2] . (R.3)

When the source function f(q:,Ro) is equal to N(¢), the convolution

integral takes the form

-B(R—RO)

T
o

R _ -1/2
R f(d),R—Ro) = [lmA(R-RO)] e

(o]
P —T2/n
x f (t-¢) rect[(d-T)/2] e dr .
-
where n=l+A(R—RO)/T§. Changing the limits of integration in accordance
with the properties of the rect function, we may rewrite the above inte-
gral as the sum of two integrals,

-B(R-Ro)

T
o]

o+1 2 ¢+1 2
xl/ re—T/nd'r-qbf e—T/nd‘r .
¢-1 ¢-1

%— £(¢,R-R ) = [4nA(R-Ro)]'1/2 e

(o}

C . P .-~ - el d s Seosati ARE IRIIEPE SPEEIES
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The result is

-B(R-R ) 2
<(n/")l/2 e—(¢ +1)/n

sinh(24/n)

R <
Ro f(¢9R_Ro) = e

e

{erf[(¢+1>//r?] - erf[(¢-1>//r71}) : (5.4)

where erf[x] is the error integral, defined by L

X 2 Do
erf(x] =3/=f et oar . '
m 4]

Let us examine the behavior of the second term in Eq. (B.4). ,
When the effective absorption is very small, n approaches zero. This
limit is appropriate for large values of T0 and for short distances.

Since

erfx] ~

-1 s X < 2 s
the second term on the right-hand side of Eq. (B.4) is approximately
linear near the time origin. It has extrema at some values of |¢l<l and
drops to half the extremum amplitude when |¢|=1.

The behavior of the first term differs from that of the second

\'
PN term in such a way as to diminish their sum. The extrema of the first
J)d term are found at the points ¢=+1:
B
"o -B(R-R )

; B ofe1,rR) = t(n/am/? o o7 (1-e7*/M)

_ Ro o]

3

The peak amplitude tends to zero when n is small and is approximately

’; equal to 1/2/7 for n=1. When the effective absorption is large, n+~ and

both the first and second terms vanish.
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The two contributing terms and their sum are shown for various

values of the parameter n in Fig. B.2. The factor exp[-B(R-Ro)] has been

suppressed because it is the same in all cases. The second term exhihits

. the basic character of a decaying N wave: 1its amplitude decays with

increasing R. The extra attenuation represented by the first term is
appreciable only for moderately large values of n (10-1<n<103).
A similar approximation of the atmospheric absorption curve has

been used by Rogers and Gardner, who took advantage of the fact that

Kt R-Ry) ﬁ”fﬁ, R-Ro)
' )

,‘ 1 =0.00}
\

1 A
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.

\
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! (¢) T @
1
.y
¢ FIGURE B.2
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the curve was a simple m2 dependence for frequencies far below the
nitrogen relaxation frequency.

3. Digital Implementation; ANSI Standard Absorption

Direct comparison of the analytical solution for an ideal N wave
with measured waveforms is not very revealing because the real wave does
not start out (at the reference distance Ro) as an ideal N. This fact
motivated the development of a computer algorithm that is able to handle
both ideal and real waveforms. Use of the computer model made possible an
indirect comparison of the analytical solution and the measurements, and
afforded a useful check for both.

The computer model is summarized in Fig. B.3. First the fast

Fourier transform (FFT) is used to obtain a frequency domain

DIGITIZED SIGNAL
1, R}

FFT

Fif, Ry)

CALCULATE STANDARD ABSORPTION AT £,

FIGURE B.3 af;)

ABSORPTION EFFECTS ON A SIGNAL —{ ~
OF ARBITRARY TIME WAVEFORM Fit, R) = F(t, Role @} {R-R)

5

Fif,, Rl

{

fer!

T

PROPAGATED SIGNAL
fie, R)

7
j
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representation of the (digitized) reference waveform. Next the ANSI
standard absorption is applied to each frequency component. Finally, the
inverse FFT is used to obtain the time waveform of the attenuated signal.
Two ways of providing the input f(t',Ro) were used: The ideal N wave was
digitized by a computer subroutine; real N waves were digitized by the
oscilloscope.

First we discuss the results for an ideal N wave input. Two
different sets of computations were made: (1) T0 fixed (5 usec) and
R-Ro varied so as to yield the values 0.001, 0.01, 0.1, 1 for n; (2) R-Ro
fixed (1 m) and To varied to yield the same four values for n. The first
set corresponds to physical propagation through the atmosphere. The
second serves to establish a range of validity for the analytical solu-
tion. The results are presented in Fig. B.4, along with waveforms calcu-
lated using the analytical model under the same conditions.,

Consider first the two columns, Fig. B.4(a) and (b). The
agreement for each value of n can easily be justified: The spectrum of an
N wave whose half-period is 5 usec 1is, for the most part, within the
designed frequency window 10 kHz - 1 MHz. For To = 5 usec the analytical
solution is accurate for the life of the signal, at least until the signal
has been attenuated by 40 dB.

The second set of computations leads to the waveforms shown in
columns (c¢) and (d). Comparison of the two columns reveals that slight
discrepancies exist between the analytical and digital computations.

When TO is much larger than 5 usec, significant low frequency energy

lies outside the design window. Since low frequency absorption in the

analytical model does not change with frequency, below 10 kHz the

e
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approximate attenuation is far greater than the true attenuation. This
disparity is manifested as an amplitude discrepancy in the upper two pairs
of waveforms in Figs. B.4(c) and (d)., The head and tail sections, where
the high frequency components are most visible, are quite similar in the
analytical and digital models. The slope of the linear portion, which
depends mainly on low frequency components, is slightly lower in the
analytical uodel.

Comparisons of column (a) with column (c) and (b) with (d)
reveal the extent to which the approximate and ANSI absorption coeffi-
cients deviate from strict dependence on the single nondimensional parame-
ter n. For example, if the constant factor exp[—B(R—Ro)] is suppressed,
the analytical solution depends only on mz and, hence, only on n, but the
range of validity is more strictly limited at the low end. 1If in the
digital model R is fixed and To is chosen to specify a certain value of n
{Fig. B.4(d)], the results differ from those obtained by fixing To and
choosing R [Fig. B.4(b)}. This is so because, for low frequency signals,
the ANSI absorption is not simply dependent on mz.

In summary, the analytical/approximate and digital/ANSI models
give similar results for ideal N waves whose half-periods are less than
5 usec. The computer model i1s of course more accurate because it employs
a more precise description of the atmospheric absorption.

4. Experiment

Measurements of the free~field attenuation of small-signal

N waves in air were carried out using the spark source, microphone, and

electronic system discussed in Chapter II. A 0.16 J spark was chosen

because (1) the period of the radiated N wave was long enough

DRSNS S auha. Wiy St SEL SRR .

OO . SO USSR
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(To = 5.0 usec) to ensure good measurement fidelity, and (2) the amplitude

was low enough to ensure that nonlinear distertion was insignificant cver

the distances of interest. Experiments with shorter N waves yielded
similar results, but accuracy was limited by the 0.5 usec time resolution
of the oscilloscope.

Time waveforms were recorded at distances of 40, 60, 100, and
160 cm. Preliminary results lacked consistency because of the variation or
"jitter" in the spark amplitude. The following procedure was devised to
statistically filter out the jitter. Only signals from sparks whose break-
down voltage was in a certain narrow range (2.0 *0.2 kV, determined by the
accuracy of the monitoring voltmeter) were stored in the oscilloscope memory.
The peak amplitudes of the stored pressure waveforms were averaged for twenty
such signals at each receiver location. Finally, the spark source was dis-
charged until a signal having a peak amplitude equal to the average peak
amplitude (+0.5%, -0.08%) was recorded. When an "average pressure trace"
was measured in this way for each microphone position, results exhibited
satisfactorily consistent trends. The standard deviation for each of the
20-term averages ranged from 2.6% to 3.7% of the average peak value. The

measured '"average waveforms' are shown in Fig. B.5(a). The amplitudes

have been multiplied by R/Ro to suppress the effect of spherical spreading.
;i The reference waveform (measured at R=Ro) was used as an input
for the computer model, and propagated waveforms were computed over the
distances R-Ro. The computed waveforms are presented in Fig. B.5(b).
Agreement between the measured and computed waveforms is well within

|
4
¢
i experimental tolerance.




9 131
; MEASURED DIGITAL/ANS!
RP/Ry - mbar RP/R; - mbar
16
R -60cm
I
;
’ R =100 cm
R=-"40cm
"3 (o) )
did
i FIGURE B.5
o MEASURED AND COMPUTED N WAVEFORMS AS A FUNCTION OF RANGE
3 RH - 48%, T = 25°C, p, = 1 atm
B |
k|
|
AR
| AS-80-779
. RDE - GA
2-22- 80

o AN




[

. o
wlla e

A e .
alawt. . -

132

5, Summary: Comparison of Analytical/Approximate Model with
Measurements

The work described in this appendix was motivated by a desire
to analytically describe the amplitude and shape of a small-signal N wave
as 1t propagates through an homogeneous atmosphere. A closed~form
solution based on an approximate form of the absorption coefficient has
been derived for a signal that is initially an ideal N wave. The
analytical/approximate solution compares favorably with a computer solu-
tion based on the American National Standard absorption. When the N wave
half-period is less than or equal to 5 usec, the results of the two
wodels are in good agreement for the life of the waveform.

A simple attenuation experiment was performed in the open air
to ascertain the effects of atmospheric absorption on a real N wave.
Absorption effects were also computed using the ANSI absorption coefficient.
The results, though limited in scope, are in excellent agreement, and serve
to verify the absorption standard in its application to broadband signals.

To better compare the results of the analytical model with the

measured data, the analytical and digital methods were used to compute
waveforms (ideal N wave input) for distances equal to those traversed in
the experiment. The initial value of To was found from measured data to be
5.0 usec, and n was calculated from To and R-Ro. The calculated waveforms
appear in Fig. B.6. If the digital model is viewed as an intermediary and
the differences between the initial ideal and real input waveforms are
taken into account, a very creditable correspondence between the analytical
solution [Fig. B.6(b)] and measured data [Fig. B.5(a)] is apparent. The
measured and numerically computed waveforms exhibit an important effect

of relaxation: the midpoint of each head shock moves away from the point
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t' = -5 usec as the range increases. This effect is not found in the
analytically calculated waveforms because the simple Aw2+B dependence of

the analytical/approximate model gives rise to waveforms which are sym-

e

metric about To' However, for the ranges of R—Ro and To considered, dif-

ferences between the results obtained from the two theoretical models are

small. It is concluded that the analytical solution is an accurate model
for propagation of small-signal, short-duration N waves over the distances

encountered in the tube experiment.
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APPENDIX C

PROGRAM LISTINGS

e

Listings for Program NTUBE, Subroutine PLTWAVE, and Function
ABSORP are presented in this appendix, Program NTUBE is used to compute

on-axis waveforms from a given direct waveform. Subroutine PLTWAVE is

N designed to plot the computed waveforms in the desired format. Function
ABSORP is used to compute atmospheric absorption in accordance with ANSI

Standard S1.26-1978.
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